基于网中网卷积神经网络的红枣缺陷检测
CSTR:
作者:
作者单位:

作者简介:

杨志锐(1995—),男,武汉大学在读硕士研究生。E-mail:568938548@qq.com

通讯作者:

中图分类号:

基金项目:


Detection of jujube defects based on the neural network with network convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于网中网卷积神经网络对红枣进行缺陷检测的方法,在原有AlexNet卷积神经网络的基础上增加了1×1隐含感知层,增强了网络的非线性以提取更抽象的特征;并采用全局平均池化层的方式替换全连接层,减少大量参数的同时提升了识别准确率。对新疆骏枣进行了实测,可将红枣分为好枣、黑斑枣、皱枣、叠枣、脱皮枣、黄皮枣和裂枣7类,表明该方法与基于常规SVM的视觉检测方法和基于AlexNet网络的分类方法相比,分类效果得到了有效提升。

    Abstract:

    We proposed a method of defect detection for jujube based on a neural network with network-in-network convolutional (NIN-CNN). This method adds 1×1 hidden perception layer to the original AlexNet convolution neural network; enhances the non-linearity of the network to extract more abstract features; and replaces the fully connected layer with the global average pooling layer, which improves the recognition accuracy while reducing a large number of parameters. In this study, Jun jujube in Xinjiang is tested. The jujube is divided into seven categories, including healthy jujube, black-spotted, wrinkled, overlapping, peeling, yellow-skinned and crack. The experimental results show that the classification effect of the proposed method is improved effectively, compared with the conventional visual detection method with SVM and the classification method with AlexNet network.

    参考文献
    相似文献
    引证文献
引用本文

杨志锐,郑宏,郭中原,等.基于网中网卷积神经网络的红枣缺陷检测[J].食品与机械,2020,(2):140-145,181.
YANG Zhi-rui, ZHENG Hong, GUO Zhong-yuan, et al. Detection of jujube defects based on the neural network with network convolution[J]. Food & Machinery,2020,(2):140-145,181.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-16
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。