基于近红外光谱及邻域粗糙集算法的
CSTR:
作者:
作者单位:

(国家粮食和物资储备局科学研究院,北京 100037)

作者简介:

杨东(1987—),男,国家粮食和物资储备局科学研究院助理研究员,博士。E-mail:yd521703@163com

通讯作者:

中图分类号:

基金项目:


Non-destructive identification of the storage quality of paddy using near
Author:
Affiliation:

(Academy of National Food and Strategic Reserves Administration, Beijing 100037, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了能够无损、准确检测出稻谷在贮藏过程中的宜存状况,利用近红外光谱技术结合数据分析方法建立了稻谷贮藏品质的鉴别模型。采集1 000~1 800 nm范围内285份样品近红外光谱数据,依据实测脂肪酸值将样品宜存状况划分为宜存、轻度不宜存、重度不宜存三类,采用邻域粗糙集(neighborhood rough set,NRS)算法终选出最优的10个特征波长结合随机森林(random forest,RF)算法所建立的稻谷贮藏品质鉴别模型性能最优,其校正集与测试集正确识别率分别为96.31%和9368%,敏感性和特异性参数分布在0.93~0.99。经分析比较,该模型性能同样优于采用连续投影算法(successive projections algorithm,SPA)和主成分分析(principal component analysis,PCA)结合RF算法各自建立的分类模型。结果表明,近红外光谱技术结合NRS和RF算法用于稻谷贮藏品质的鉴定是可行的,适用于储粮品质安全现场快速筛查。

    Abstract:

    In order to quickly and accurately detect the status of paddy during storage, the near infrared (NIR) technique was used to establish classification models for identifying the storage quality of paddy. The NIR data of 285 samples in the range of 1 000~1 800 nm were collected. Based on the measured fatty acid, the storage state of the sample was divided into three categories (good storage quality, moderate storage quality obviously tending to decline, and poor storage quality). The optimal 10 wavelengths were selected by neighborhood rough set (NRS) algorithm. The best classification model was established by the combination of NRS and random forest (RF) algorithm. The correct classification rate (CCR) of the calibration set and the test set are 96.31% and 93.68%, respectively. The results of sensitivity and specificity are distributed in a range of 0.93 to 0.99. Furthermore, the performance of the model is also superior to the other models established by using successive projections algorithm (SPA) and principal component analysis (PCA) algorithms combined with RF. The result indicated that the fusion of NIR technique and the NRS and RF algorithms is feasible for the identification of paddy storage quality, and which can provide a reference for the development of on-site rapid inspection equipment for grain quality and safety.

    参考文献
    相似文献
    引证文献
引用本文

杨东,常青,苑江浩,等.基于近红外光谱及邻域粗糙集算法的[J].食品与机械,2019,(11):79-84.
YANG Dong〖SX)〗〖MZ)〗, CHANG Qing〖SX)〗, YUAN Jiang hao〖SX)〗,et al. Non-destructive identification of the storage quality of paddy using near[J]. Food & Machinery,2019,(11):79-84.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-06-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-24
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。