基于伏安电子舌的枸杞产地快速辨识
CSTR:
作者:
作者单位:

(1. 山东理工大学计算机科学与技术学院,山东 淄博 255049;2. 山东理工大学农业工程与食品科学学院,山东 淄博 255049)

作者简介:

殷廷家,男,山东理工大学在读硕士研究生。

通讯作者:

王志强(1977—),男,山东理工大学教授,博士。E-mail:wzq@sdut.edu.cn

中图分类号:

基金项目:

山东省自然科学基金(编号:ZR2019MF024);国家自然科学基金(编号:61701286);教育部科技发展中心产学研新基金(编号:2018A02010);赛尔网络下一代互联网技术创新项目(编号:NGII20170314)


Rapid identification method of wolfberry geographical origin based on voltammetry electronic tongue
Author:
Affiliation:

(1. School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255049, China; 2. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于希尔伯特—黄变换(HHT)—线性判别分析(LDA)的枸杞产地电子舌辨识方法。以宁夏、新疆、甘肃、青海4个产地的枸杞为试验材料,采用伏安电子舌采集不同产地枸杞的“指纹图谱”信息,利用集合经验模态分解(EEMD)对电子舌原始信号进行多尺度分解得到一组本征模态函数(IMF),分别求取其奇异谱熵和Hilbert边际谱作为特征向量。在该基础上,利用LDA建立枸杞产地非线性组合预测模型。试验结果表明,HHT-LDA与分别采用特征点提取(FPE)、主成分分析(PCA)和离散小波变换(DWT)的算法相比,具有更好的分类效果。对未知产地枸杞的总体分类精度和kappa系数分别达到98%和0.973,均表明该模型具有较好的鉴别效果。

    Abstract:

    In order to achieve rapid identification of Wolfberry from different geographical origin, an electronic tongue identification method based on Hilbert-Huang transform (HHT)-Linear Discriminant Analysis (LDA) was proposed. Taking the four geographical origins (Ningxia, Xinjiang, Gansu and Qinghai) of wolfberry as experimental materials, the voltammetry electronic tongue was used to collect the “fingerprint” information of different geographical origins, and then the Ensemble empirical modal decomposition (EEMD) was used to carry out the original signal of the electronic tongue. The scale decomposition obtained a set of intrinsic mode functions (IMF), and finally its singular spectral entropy and Hilbert marginal spectrum were collected as feature vectors. On this basis, LDA was used to establish a nonlinear combination prediction model for the production area. The experimental results showed that HHT-LDA was better than the algorithm of Feature Point Extraction (FPE), Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT). The overall classification accuracy and kappa coefficient of Wolfberry from unknown origin reached 98% and 0.973, respectively, indicating that the model had a good identification performance.

    参考文献
    相似文献
    引证文献
引用本文

殷廷家,杨正伟,国婷婷,等.基于伏安电子舌的枸杞产地快速辨识[J].食品与机械,2019,(5):116-122.
YINTingjia, YANGZhengwei, GUOTingting, et al. Rapid identification method of wolfberry geographical origin based on voltammetry electronic tongue[J]. Food & Machinery,2019,(5):116-122.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-01-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-26
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。