基于电子舌的掺假羊奶快速定量预测模型
CSTR:
作者:
作者单位:

(山东理工大学计算机科学与技术学院,山东 淄博 255049)

作者简介:

韩慧,女,山东理工大学讲师,硕士。

通讯作者:

王志强(1977—),男,山东理工大学教授, 博士。E-mail: wzq@sdut.edu.cn

中图分类号:

基金项目:

国家自然科学基金(编号:61473179);山东省自然科学基金(编号:ZR2014FM007);山东理工大学中青年教师海内外访学计划经费资助(编号:2018)


Rapid quantitative prediction model of adulterated goat milk based on electronic tongue
Author:
Affiliation:

(School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255049, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对掺假羊奶的快速、客观辨别,模仿人体味觉感知机理研制了一套便携式电子舌检测系统,并建立了一种能够快速鉴别掺假羊奶的新方法。系统检测时,首先对样本溶液进行大幅脉冲扫描,用以获取掺假羊奶的“指纹”信息,然后利用离散小波变换(discrete wavelet transform,DWT)对“指纹”数据中的特征信息进行提取,最后在此基础上,采用主成分分析(principal component analysis,PCA)方法对不同掺假比例的羊奶进行定性辨别。采用粒子群优化极限学习机(Particle swarm optimization extreme learning machine,PSO-ELM)对不同掺假比例的羊奶进行了定量预测。通过试验数据得出,PCA 对6种不同掺假比例的羊奶区分达到100%,区分效果好。PSO-ELM羊奶纯度预测模型拟合曲线非常接近实测值曲线,因此采用PSO-ELM方法建立掺假羊奶纯度定量预测模型具有较高的预测精度。

    Abstract:

    In order to discriminate adulterated goat milk quickly and objectively, a set of portable electronic tongue detection system was exploited, and a new method of fast identification is developed. When detected in the system, the sample solution was first scanned to obtain the "fingerprint" information of adulterated goat milk, and then the discrete wavelet transform (DWT) was used to obtain the characteristics of the "fingerprint" data. On this basis, the principal component analysis (PCA) was used to determine the quality of goat milk with different adulteration ratio. Particle swarm optimization extreme learning machine (PSO-ELM) was applied to quantitatively predict goat milk with different adulteration proportions. According to the experimental data, PCA could distinguish six kinds of goat milk with different adulteration ratios up to 100%, and it had a good effect on distinguishing adulterated goat milk. In order to realize the quantitative prediction of goat milk with different adulteration ratios, the fitting curve of PSO-ELM goat milk purity prediction model was very close to the measured curve, so the PSO-ELM method was used to establish the quantitative prediction model of goat milk purity with high prediction accuracy. This study might provide new ideas and technical support for qualitative identification and quantitative prediction of adulterated goat milk.

    参考文献
    相似文献
    引证文献
引用本文

韩慧,王志强,李彩虹,等.基于电子舌的掺假羊奶快速定量预测模型[J].食品与机械,2018,34(12):53-56.
HANHui, WANGZhiqiang, LICaihong, et al. Rapid quantitative prediction model of adulterated goat milk based on electronic tongue[J]. Food & Machinery,2018,34(12):53-56.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-09-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。