基于高光谱成像技术的金银花霉变检测模型
CSTR:
作者:
作者单位:

(1. 河南科技大学食品与生物工程学院,河南 洛阳 471023;2. 河南省食品原料工程技术研究中心,河南 洛阳 471023)

作者简介:

冯洁,女,河南科技大学在读硕士研究生。

通讯作者:

刘云宏(1975—),男,河南科技大学副教授,博士。E-mail:beckybin@haust.edu.cn

中图分类号:

基金项目:

国家自然科学基金河南联合项目(编号:U1404334);河南省高等学校青年骨干教师资助计划(编号:2015GGJS-048);河南省自然科学基金项目(编号:162300410100);河南省科技攻关项目(编号:172102310617)


Detection models of mildew degree in honeysuckle based on hyperspectral imaging technology
Author:
Affiliation:

(1. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; 2. Henan Engineering Technology Research Center of Food Materials, Luoyang, Henan 471023, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高光谱成像技术,研究一种快速、准确、无损检测金银花霉变程度的方法。通过比较Savitzky-Golay(SG)卷积平滑、多元散射校正(MSC)和SG-MSC 3种预处理方法对偏最小二乘算法(PLS)建模效果的影响,得到SG-MSC为建模最优预处理方法。使用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)选择经预处理后光谱的特征波长,并分别建立偏最小二乘判别(PLS-DA)和最小二乘支持向量机(LS-SVM)的判别分析模型。结果表明,光谱经SG-MSC预处理后,应用CARS提取特征波长并建立LS-SVM判别分析模型为金银花不同霉变程度最优判别模型,其训练集与验证集的正确率均达到100%。利用高光谱成像技术能够快速无损、有效地鉴别金银花霉变程度,并且在特征波长下能实现金银花霉变程度的快速判别分析。

    Abstract:

    Hyperspectral imaging technology was applied to develop a rapid, accurate and non-destructive detection method for honeysuckle mildew degree levels. The original spectral data were analyzed by three pretreatment methods with Savitzky-Golay (SG) convolution smoothing, Multiple Scatter Correct (MSC) and SG-MSC. A comparison was made among SG, MSC and SG-MSC based on Partial Least Squares (PLS), of which the best pretreatment method was SG-MSC. The Successive Projection Algorithm (SPA) and Competitive Adaptive Reweighted Sampling (CARS) were used to extract the characteristic wavelengths after SG-MSC pretreatment. Partial Least Square Discriminant Analysis (PLS-DA) and Last Squares Support Vector Machine (LS-SVM) were applied to build discriminant analysis models based on characteristic wavelengths. The results showed that the LS-SVM model based on CARS performed the optimal discriminant performance for honeysuckle’s mildew degree levels, with the accuracy of 100% for training set and validation set. Therefore, hyperspectral imaging technology can be used to identify mildew degree in honeysuckle effectively and non-destructively based on characteristic wavelengths.

    参考文献
    相似文献
    引证文献
引用本文

冯洁,刘云宏,王庆庆,等.基于高光谱成像技术的金银花霉变检测模型[J].食品与机械,2018,34(8):60-64,78.
FENGJie, LIUYunhong, WANGQingqing, et al. Detection models of mildew degree in honeysuckle based on hyperspectral imaging technology[J]. Food & Machinery,2018,34(8):60-64,78.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-04-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。