基于高光谱成像技术的金银花与山银花快速鉴别
CSTR:
作者:
作者单位:

(1. 河南科技大学食品与生物工程学院,河南 洛阳 471023;2. 河南省食品原料工程技术研究中心,河南 洛阳 471023)

作者简介:

冯洁,女,河南科技大学在读硕士研究生。

通讯作者:

刘云宏(1975—),男,河南科技大学副教授,博士。E-mail:beckybin@haust.edu.cn

中图分类号:

基金项目:

国家自然科学基金河南联合项目(编号:U1404334);河南省高等学校青年骨干教师资助计划(编号:2015GGJS-048);河南省自然科学基金项目(编号:162300410100);河南省科技攻关项目(编号:172102310617)


Rapid identification of Lonicerae Japonicae Flos and Lonicerae Flos based on hyperspectral imaging
Author:
Affiliation:

(1. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China; 2. Henan Engineering Technology Research Center of Food Materials, Luoyang, Henan 471023, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高光谱成像技术,研究一种快速、准确、无损的鉴别金银花与山银花的方法。通过对比3种预处理方法对偏最小二乘算法(Partial Least Squares,PLS)建模效果的影响,得到SNV为建模最优预处理方法。使用回归系数法(Regression Coefficient,RC)和连续投影算法(Successive Projection Algorithm,SPA)选择经预处理后光谱的特征波长,并分别建立极限学习机(Extreme learning machine,ELM)和最小二乘支持向量机(Last Squares Support Vector Machine,LS-SVM)的判别分析模型。结果表明,光谱经SNV预处理后,应用SPA提取特征波长并建立LS-SVM判别分析模型为金银花和山银花最优判别模型,其建模集与预测集识别率均达到了100.00%。因此,利用高光谱成像技术能够无损、有效地鉴别金银花与山银花,并且在全光谱和特征波长下均能实现金银花与山银花的快速判别分析。

    Abstract:

    In order to identify Lonicerae Japonicae Flos and Lonicerae Flos rapidly and precisely, a hyperspectral imaging technology combined with chemometric methods was applied to develop the nondestructive identification models for Lonicerae Japonicae Flos and Lonicerae Flos. Firstly, the original spectral data were analyzed by three pretreatment methods including Savitzky-Golay (SG) convolution smoothing, Multiple Scatter Correct (MSC) and Standard Normal Variate Transformation (SNV). A comparison was made among SG, MSC and SNV based on Partial Least Squares (PLS), of which the best pretreatment method was SNV. The Regression Coefficient (RC) and Successive Projection Algorithm (SPA) were used to extract the characteristic wavelengths after SNV pretreatment. Extreme learning machine (ELM) and Last Squares Support Vector Machine (LS-SVM) were applied to build the classification models based on characteristic wavelengths. This results revealed that the LS-SVM model based on SPA performed the optimal classification, with the accuracy of all 100% for modeling set and prediction set. Therefore, hyperspectral imaging technology can be used to identify Lonicerae Japonicae Flos and Lonicerae Flos effectively and non-destructively based on full wavelengths and characteristic wavelengths.

    参考文献
    相似文献
    引证文献
引用本文

冯洁,刘云宏,王庆庆,等.基于高光谱成像技术的金银花与山银花快速鉴别[J].食品与机械,2018,34(5):87-90,176.
FENGJie, LIUYunhong, WANGQingqing, et al. Rapid identification of Lonicerae Japonicae Flos and Lonicerae Flos based on hyperspectral imaging[J]. Food & Machinery,2018,34(5):87-90,176.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-02-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。