基于振动特性的西瓜品种鉴别及糖度预测
CSTR:
作者:
作者单位:

(1. 江南大学机械工程学院,江苏 无锡 214122;2. 江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122)

作者简介:

庄为,男,江南大学在读硕士研究生。

通讯作者:

李臻峰(1968—),男,江南大学教授,博士。E-mail:2996582592@qq.com

中图分类号:

基金项目:

国家自然科学基金(编号:515082290);江苏省产学研联合创新资金(编号:BY2014023-32);江苏省食品先进制造装备技术重点实验室开放课题(编号:FM-201406)


Identification of watermelon varieties and forecast for sugar content of watermelon based on vibration characteristics
Author:
Affiliation:

(1. School of Mechanical Engineering of Jiangnan University, Wuxi, Jiangsu 214122, China; 2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi, Jiangsu 214122, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对通过敲击判断西瓜品质会因品种不同而造成误判的问题,构建振动检测系统,获取皇冠、早佳8424、京欣和硒砂4个品种西瓜频响函数,利用PNN神经网络模型实现西瓜品种的鉴别,准确率达92%以上。同时,利用逐步多元线性回归分析,通过频响函数的主要共振峰频率与糖度的关系,分别建立各品种西瓜的糖度预测模型,确定系数均在0.86 以上。对预测集样本先鉴别品种再预测糖度,对于品种鉴别准确的瓜,其糖度测量误差小于6.2%;而对于品种鉴别错误的瓜,由于选用了错误的预测模型,测量误差较大。在上述基础上,可对未知市售西瓜进行品种鉴别,进而自动选取适当相应模型进行糖度测量。

    Abstract:

    In order to solve the problem of consumers misjudgment by hitting watermelon because of different watermelon varieties, a vibration detection system was built to get the frequency response functions of “Huang guan”, “Zaojia8424”, “Jng xin” and “Xisha” watermelon. Using the PNN neural network model achieved the identification of watermelon varieties, and the accuracy was more than 92%.At the same time,according to the relationship between the sugar content and the main resonant peak frequency, the prediction model of the sugar content of each variety of watermelon was established by stepwise multivariate linear regression analysis, and the coefficient were all above 0.86.The prediction set samples were identified and then predicted the sugar content. The measurement error of the sugar content of the watermelons which were identified accurately was less than 6.2%. The measurement error of the sugar content was larger for the watermelon which was identified mistakenly because of error prediction model. On the above basis, the unknown watermelons in the market could be identified, and then the appropriate corresponding model was selected automatically to measure the sugar content.

    参考文献
    相似文献
    引证文献
引用本文

庄为,李臻峰,宋飞虎,等.基于振动特性的西瓜品种鉴别及糖度预测[J].食品与机械,2018,34(4):140-145,179.
ZHUANGWei, LIZhenfeng, SONGFeihu, et al. Identification of watermelon varieties and forecast for sugar content of watermelon based on vibration characteristics[J]. Food & Machinery,2018,34(4):140-145,179.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。