基于便携式近红外光谱仪的食品接触性塑料鉴别
CSTR:
作者:
作者单位:

(1. 华东交通大学机电与车辆工程学院,江西 南昌 330013;2. 江苏大学食品与生物工程学院,江苏 镇江 212013;3. 赣州出入境检验检疫局,江西 赣州 341000)

作者简介:

郝勇(1978—),男,华东交通大学副教授,博士后。E-mail:haonm@163.com

通讯作者:

中图分类号:

基金项目:

国家质量监督检验检疫总局科技计划项目(编号:2017IK012);国家自然科学基金项目(编号:21265006);江西省自然科学基金项目(编号:2015ZBAB201003)


Research on plastic material identification based on portable near infrared spectrometer
Author:
Affiliation:

(1. School of Mechanotronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China; 2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 3. Ganzhou Entry-Exit Inspection and Quarantine Bureau, Ganzhou, Jiangxi 341000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用便携式近红外光谱仪对聚对苯二甲酸乙二酯(PET)、高密度聚乙烯(HDPE)、低密度聚乙烯(LDPE)、聚氯乙烯(PVC)、聚苯乙烯(PS)和聚碳酸酯(PC)6类食品接触性塑料材质进行鉴别研究。用5点平滑、多元散射校正(MSC)、一阶导数和标准正态变量变换(SNV)4种方法对塑料样品光谱进行预处理;主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)分别用于塑料样品光谱空间分布分析和定性判别模型的建立。结果表明:光谱经SNV和MSC预处理后,6类塑料样品在前3个主成分空间得到了较好的分离;PLS-DA结合SNV预处理方法可得到精简的塑料材质定性判别模型,模型校正集和预测集的正确识别率(CRR)均为100%。该方法可为食品接触性塑料材质的快速鉴别提供参考。

    Abstract:

    Portable NIR spectrometers was used for the identification of six kinds of food-contacted plastic material including polyethylene terephthalate (PET), high-density polyethylene (HDPE), low-density polyethylene (LDPE), polyvinyl chloride (PVC), polystyrene (PS) and polycarbonate (PC). Four kinds of spectral preprocessing methods including 5-point smoothing, multivariate scattering correction (MSC), first-order derivative and standard normal variable transformation (SNV) were used to preprocess the spectra of plastic samples. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were used to analyze the spectral space distribution of plastic samples and establish qualitative discriminant models. The results showed that six kinds of food-contacted plastic material could be clearly separated in the first three principal component spaces after the pretreatment of SNV and MSC methods. The PLS-DA combined with SNV could be used to get a concise plastic material qualitative discriminant model, and the correct recognition rates (CRR) were 100% both for calibration and prediction datasets. The method was expected to be a reference method for rapid identification of food-contacted plastic materials.

    参考文献
    相似文献
    引证文献
引用本文

郝勇,温钦华,饶敏,等.基于便携式近红外光谱仪的食品接触性塑料鉴别[J].食品与机械,2018,34(4):124-127.
HAOYong, WENQinhua, RAOMin, et al. Research on plastic material identification based on portable near infrared spectrometer[J]. Food & Machinery,2018,34(4):124-127.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。