基于机器视觉的大曲质量检测系统研究
CSTR:
作者:
作者单位:

(1. 四川理工学院机械工程学院, 四川 自贡 643000; 2. 过程装备与控制工程四川省高校重点实验室,四川 自贡 643000; 3. 四川理工学院生物工程学院,四川 自贡 643000)

作者简介:

张芯豪,男,四川理工学院在读硕士研究生。

通讯作者:

黄丹平(1968—),男,四川理工学院教授,博士。E-mail:hdpyx2002@163.com

中图分类号:

基金项目:

四川省科技厅项目(编号:2016SZ0074);四川省部级重点实验室项目(编号:GY201601);四川省高校重点实验室项目(编号:GK201605)


Research on the Daqu quality detection system based on machine vision
Author:
Affiliation:

(1. College of Mechanical Engineering Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China; 2. Sichuan Provincial Key Lab of Process Equipment and Control, Zigong, Sichuan 643000, China; 3. Bioengineering College of Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对白酒固态酿造依靠人工经验判断大曲质量,且没有量化判断标准的问题,研究一套基于机器视觉的大曲质量检测系统。该系统通过动态阈值分割法、RGB转换Lab颜色空间、CNN卷积神经网络等方法提取大曲的几何参数、颜色和裂缝3种视觉信息特征。在此基础上,建立大曲视觉信息特征与大曲质量的对应关系,并根据所建立关系综合判断大曲质量。试验证明,该检测系统大曲几何参数测量精度为±1 mm。同时该系统能精准识别与提取大曲断面乳白色菌丝、红曲霉和大曲表面裂缝视觉特征,通过1 000次实验验证,其大曲视觉信息特征识别准确率可达到99.0%,能够满足相关酿酒生产现场工艺要求。

    Abstract:

    Aiming at the problem that the solid-state fermentation of liquor depended on the artificial experience to judge the quality of Daqu without quantitative judgment standard, a set of Daqu quality detection system based on machine vision was studied. The dynamic threshold segmentation method was used in this system, RGB transform Lab color space, CNN convolutional neural network and other methods were used to extract three kinds of visual information characteristics of Daqu, the geometric parameters, color and crack. Therefore, the corresponding relationship between the visual information characteristics and the quality of Daqu was established, and the quality of Daqu was judged according to the established relationship. The experimental results showed that the measuring accuracy of the system was 1mm. At the same time, the system could accurately identify and extract the visual characteristics of milky white hyphae, Monascus and Daqu surface fractures of relative sections. Through 1 000 experiments, the accuracy of the identification of Daqu visual information could reach 99.0%, which couldmeet the requirements of the related wine production.

    参考文献
    相似文献
    引证文献
引用本文

张芯豪,黄丹平,田建平,等.基于机器视觉的大曲质量检测系统研究[J].食品与机械,2018,34(4):80-84.
ZHANGXinhao, HUANGDanping, TIANJianping, et al. Research on the Daqu quality detection system based on machine vision[J]. Food & Machinery,2018,34(4):80-84.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-01-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。