基于高光谱信息特征选择的玉米霉变程度Fisher鉴别方法
CSTR:
作者:
作者单位:

(河南科技大学食品与生物工程学院,河南 洛阳 471023)

作者简介:

戴松松,女,河南科技大学在读硕士研究生。

通讯作者:

殷勇(1966—),男,河南科技大学教授,硕士生导师,博士。E-mail:yinyong@haust.edu.cn

中图分类号:

基金项目:

河南省科技攻关项目(编号:172102210256)


Fisher discriminant analysis for moldy degrees of maize samples based on the feature selection of hyperspectral data
Author:
Affiliation:

(College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan 471023, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高高光谱鉴别玉米霉变程度的正确率,分别对全波长和特征波长下霉变玉米进行鉴别分析。利用高光谱图像采集系统获得250个霉变玉米样本的高光谱数据,并用标准正态变量变换(standard normal variate,SNV)和多元散射校正(Multiplicative scatter correction,MSC)2种方法对原始数据进行预处理,再对未预处理和预处理后的原始数据进行判别,优选出多元散射校正的预处理方法;运用偏最小二乘回归系数选择了9个特征波长;运用Fisher判别分析(Fisher discriminant analysis,FDA)分别对全波长和特征波长下的训练集进行判别分析,并用对应的测试集进行检验。FDA结果表明,全波长下判别模型的训练集和测试集的准确率分别为97.71%,97.33%,9个特征波长下训练集和测试集的准确率分别为100.00%,98.67%。研究结果表明,利用特征光谱能够较好地表征玉米的霉变程度,有利于提高玉米霉变程度的鉴别正确率。

    Abstract:

    In order to improve the identification accuracy of moldy degrees of maize samples using hyperspectral, the identification effects of moldy maize at the full wavelength and the characteristic wavelength were investigated in this study, respectively. Firstly, the hyperspectral data of 250 moldy maize samples were obtained by hyperspectral image acquisition system, and the standard normal variate (SNV) and multiplicative scatter correction (MSC) were employed to preprocess the original data; and then the MSC was adopted by comparing the results of the preprocessed and non-preprocessed data. Secondly, nine characteristic wavelengths were selected by using the partial least squares regression coefficients. Finally, Fisher discriminant analysis (FDA) was used to analyze the training set at full wavelengths and characteristic wavelengths, and examined by the corresponding test set. The FDA results showed that the accuracy of the training set and test set were 97.71% and 97.33% for full wavelengths case, respectively, and were 100.00% and 98.67% for characteristic wavelengths case, respectively. The accuracy of the training set and test set at 9 characteristic wavelengths were 100.00% and 98.67% respectively. The research findings showed that the characteristic wavelengths could be used to represent the moldy degrees of maize samples, which was helpful to improve the identification correct rate of moldy maize. Moreover, the research findings might provide a reference for identifying the other agricultural products using hyperspectral technology.

    参考文献
    相似文献
    引证文献
引用本文

戴松松,殷勇.基于高光谱信息特征选择的玉米霉变程度Fisher鉴别方法[J].食品与机械,2018,34(3):68-72.
DAISongsong, YINYong. Fisher discriminant analysis for moldy degrees of maize samples based on the feature selection of hyperspectral data[J]. Food & Machinery,2018,34(3):68-72.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。