基于电子舌检测的橙汁贮藏品质研究
CSTR:
作者:
作者单位:

(1. 山东理工大学计算机科学与技术学院,山东 淄博 255000;2. 山东理工大学农业工程与食品科学学院,山东 淄博 255000)

作者简介:

史庆瑞,男,山东理工大学在读硕士研究生。

通讯作者:

王志强(1977—),男,山东理工大学副教授,博士。E-mail: wzq@sdut.edu.cn

中图分类号:

基金项目:

国家自然科学基金项目(编号:61473179);国家自然科学基金项目(编号:31772068);山东省自然科学基金项目(编号:ZR2015CM016)


Research on detection for the storage quality of orange juice based on the electronic tongue
Author:
Affiliation:

(1. School of Computer Science and Technology, Shandong University of Technology, Zibo, Shandong 255000, China; 2. School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现对不同储存时间的鲜榨橙汁品质进行客观、快速的评价,采用基于虚拟仪器技术的电子舌系统对6种不同储存时间下的鲜榨橙汁样本进行定性和定量分析。针对电子舌输出信号特点,分别采用主成分分析(Principal Component Analysis,PCA)和离散小波变换(Discrete Wavelet Transform,DWT)方法对输出信号进行预处理,以分类效果为依据,确定离散小波变换作为较佳特征提取方法。在此基础上,采用线性判别分析(Linear Discriminant Analysis,LDA)方法对不同储存时间鲜榨橙汁样本进行定性分析,然后采用粒子群优化最小二乘支持向量机(Particle Swarm Optimization Least Squared-Support Vector Machines,PSO-LSSVM)对鲜榨橙汁的不同储存时间进行定量预测。结果表明:LDA结果中第一判别式(LD1)和第二判别式(LD2)的综合贡献率为95.7%,6种储存时间下的鲜榨橙汁样本均得到有效定性辨别;而PSO-LSSVM预测模型对鲜榨橙汁的不同储存时间具有较高的定量预测精度,其相关系数(R2)、均方根误差、平均绝对误差分别为0.999 1,0.287 7,0.232 8。

    Abstract:

    The aim of this work was to fulfill the objective and rapid assessment of quality and flavor of fresh orange juice with different storage time. An electronic tongue system that based on virtual instrument technology was developed and used to the qualitative and quantitative analysis of fresh orange juice samples with six kinds of storage time. According to the characteristics of electronic tongue respond signal, it was first preprocessed by the principal component analysis (PCA) method and discrete wavelet transform (DWT) method, respectively. According to the classification result, the DWT was selected as a recommended feature extraction method. Then the linear discriminant analysis (LDA) was used to the qualitative analysis of fresh orange juice samples with different storage time. Moreover, the least squared-support vector machines based on particle swarm optimization method (PSO-LSSVM) was applied to quantitative forecast the different storage time. The results showed that the cumulative contribution rate of LD1 and LD2 was reached 95.7% when the linear discriminant analysis was employed, and the fresh orange juice samples with the six kinds of storage time were effectively discriminated; The PSO-LSSVM prediction model had high prediction precision for different storage time of fresh orange juice, the correlation coefficient (R2) root mean square error (RMSE), mean absolute error (MAE) were 0.999 1, 0.287 7, and 0.232 8, respectively. This study could provide technical reference for quality evaluation and monitoring of fresh fruit juice.

    参考文献
    相似文献
    引证文献
引用本文

史庆瑞,国婷婷,殷廷家,等.基于电子舌检测的橙汁贮藏品质研究[J].食品与机械,2017,33(11):137-142,203.
SHIQingrui, GUOTingting, YINTingjia, et al. Research on detection for the storage quality of orange juice based on the electronic tongue[J]. Food & Machinery,2017,33(11):137-142,203.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-10
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。