基于近红外高光谱成像技术的涩柿SSC含量无损检测
CSTR:
作者:
作者单位:

(1. 福建农林大学机电工程学院,福建 福州 350002;2. 华中农业大学工学院,湖北 武汉 430070)

作者简介:

魏萱(1987—),女,福建农林大学讲师,博士。E-mail: dfjie@mail.hzau.edu.cn

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金(编号:2017J05041);福建农林大学现代农林装备及其自动化创新平台(编号:612014017)


Research on Non-destructive methods for soluble solid content detection of astringent persimmon based on near-infrared hyperspectral technology
Author:
Affiliation:

(1. College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; 2. College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对150个涩柿采集900~1 700 nm波段的近红外高光谱图像信息,利用蒙特卡罗—无信息变量消除(MC-UVE)和连续投影算法(SPA)对感兴趣区域光谱进行波长优选。通过MC-UVE-SPA优选出924.69,928.05,1 112.72,1 270.91,1 365.3,1 402.42,1 453.06,1 547.69 nm 8个特征波长,对应的光谱反射率作为柿子可溶性固性物含量(SSC)检测的偏最小二乘回归(PLSR)检测模型输入,其预测集相关系数rpre=0.942,预测集均方根误差RMSEP=1.009 °Brix。结果表明,MC-UVE-SPA可以有效提取与柿子SSC含量相关的特征信息,从而保留较少的波长建立较好的预测模型。

    Abstract:

    This study collected the near infrared (NIR) hyperspectral images of 150 astringent persimmons, with the spectra are in 900~1700 nm. Monte Carlo-uninformative variable elimination (MC-UVE) algorithm and successive projections algorithm (SPA) were adopted to the optimization of wavelengths obtained from the region of interest (ROI). Eight wavelengths were selected by MC-UCE-SPA. These feature wavelengths were 924.69, 928.05, 1 112.72, 1 270.91, 1 365.3, 1 402.42, 1 453.06 and 1 547.69 nm, respectively. The spectral reflectance of the 8 feature wavelengths were applied to establish the detective model for the soluble solid content (SSC) of persimmon by partial least squares regression (PLSR) method. The correlation coefficient and root mean square error of prediction set are rpre=0.942, RMSEP=1.009 °Brix. The results indicated that MC-UVE-SPA could effectively extract the characteristic information related to the SSC and develop a better predictive model with fewer wavelengths. This work can provide technical support and research basis for the nondestructive detection, grading and processing equipment for persimmon quality.

    参考文献
    相似文献
    引证文献
引用本文

魏萱,何金成,叶大鹏,等.基于近红外高光谱成像技术的涩柿SSC含量无损检测[J].食品与机械,2017,33(10):52-55.
WEIXuan, HEJincheng, YEDapeng, et al. Research on Non-destructive methods for soluble solid content detection of astringent persimmon based on near-infrared hyperspectral technology[J]. Food & Machinery,2017,33(10):52-55.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-10
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。