基于高光谱技术的柑橘不同部位糖度预测模型研究
CSTR:
作者:
作者单位:

(华中农业大学工学院,湖北 武汉 430070)

作者简介:

介邓飞(1982—),男,华中农业大学讲师,博士。E-mail: dfjie@mail.hzau.edu.cn

通讯作者:

中图分类号:

基金项目:

现代农业(柑橘)产业技术体系建设专项资金项目(编号:CARS-27);中央高校基本科研业务费资助项目(编号:2662015PY078);国家级大学生创新项目(编号:201610504057)


Research on the detection model of sugar content in different position of citrus based on the hyperspectral technology
Author:
Affiliation:

(College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高光谱技术研究柑橘不同部位的糖度预测模型,将花萼、果梗和赤道部位的高光谱信息分别建立与其对应部位糖度的预测模型,建立基于偏最小二乘(Least squares regression,PLSR)、主成分回归(Principal component regression,PCR)和多元线性回归(Stepwise multivariate linear regression,SMLR)预测模型,3种预测模型中PLSR模型检测效果最好,通过Norris derivative预处理方法对花萼光谱数据进行处理后,预测集相关系数rpre=0.950,预测集均方根误差RMSEP=0.636 °Brix。结果表明,采用柑橘不同部位的高光谱信息与对应糖度预测模型是可行的,花萼部位所建立模型的效果优于果梗、赤道部位,因此花萼部位可作为优先选择的光谱检测部位,这对于指导实际检测分级生产中柑橘的摆放位置具有重要意义;采用PLSR方法建立柑橘花萼、果梗和赤道部位的高光谱信息与平均糖度的预测模型时,花萼部位模型效果最好,预测集相关系数rpre=0.913,预测集均方根误差RMSEP=0.621 °Brix,建模效果相较于对应部位光谱与糖度模型差,因此,采用柑橘全部果肉的平均糖度与采集部位光谱建立糖度预测模型具有一定的局限性。

    Abstract:

    Hyperspectral techniques were used to study the sugar content of different parts of citrus, and the sugar content detection models with hyperspectral information of calyx, stem and equator part were established respectively. The results showed that the model established by calyx was better than that of stem and equator. The detection models of partial least squares regression (PLSR), principal component regression (PCR), and stepwise multivariate linear regression (SMLR) were established respectively, and the results of these three models were close. The PLSR model was found to the best among them, after Norris derivative pretreatment methods were applied, the prediction correlation coefficient (rpre) and the root mean square error of prediction (RMSEP) were 0.950 and 0.636 °Brix. This result inclined that it was feasible to use the hyperspectral technology to detect the sugar content in different parts. The study indicated that the calyx part could be the prior choice for the sugar content detection site in the citrus quality testing, and the conclusion has great significance for the way of citrus place in the actual production. Moreover, the PLSR method was used to establish the model of hyperspectral information and average sugar content in calyx, stem and equator part. The highest prediction rpre and RMSEP of models was in the calyx and only to be 0.913 and 0.621 °Brix, which was not excellent enough. Therefore, it was limited to predict the citrus average sugar content with the hyperspectral information of a certain part.

    参考文献
    相似文献
    引证文献
引用本文

介邓飞,杨杰,彭雅欣,等.基于高光谱技术的柑橘不同部位糖度预测模型研究[J].食品与机械,2017,33(3):51-54.
JIEDengfei, YANGJie, PENGYaxi, et al. Research on the detection model of sugar content in different position of citrus based on the hyperspectral technology[J]. Food & Machinery,2017,33(3):51-54.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-10
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。