Abstract:In order to ensure white apricot a good color after drying, avoiding brown appearance, as well as provide the theoretical basis for the selection of drying equipment and process determination of the small white apricot, the hot-air drying method was investigated in this study. The brightness value (L), red-green value (a), yellow-blue value (b), total chromatic aberration (△E) and browning index (BI) were taken as the study indexes, the influence of different hot-air drying temperatures (40, 50, 60 ℃) and wind speeds (2, 3, 4 m/s) on Xinjiang white apricot was studied. Moreover, the dynamic model of its color change of by hot-air drying was established by using different models to effectively predict and regulate the degree of apricot browning. The results showed that more obvious color changes have occurred to white apricots in the different wind speeds and different hot-air drying temperature conditions, and the different hot-air drying temperatures have significant effects on the drying time and color of dried apricot after drying. However, different drying wind speeds were found no significant effect on the color of dried apricot after drying. Under conditions of different hot-air drying temperatures and wind speeds, the L and b values of dried white apricots were gradually decreased with the extension of the drying time, while △E and BI values gradually increased. In the process of hot-air drying, the reaction rate constant k value of the color parameter of white apricot showed a certain regular changes with the increase of the drying temperature. Of which the k value is greatly affected by the hot-air temperature, and was less affected by the wind speed. According to the comparison result of the fitting determination coefficient R2, by means of kinetic equation simulation, it was concluded that the 0-order model could be used to better describe and predict the color change of white apricot in the hot-air drying process under different wind speeds and drying temperatures. However, under conditions of different wind speeds and drying temperatures, the first-order model was better for the dynamic simulation of white apricot browning. Our results provided the theoretical basis for drying process of white apricot as well as sensory quality control of dried apricots.