基于机器视觉的番茄成熟度颜色判别
CSTR:
作者:
作者单位:

(1. 石河子大学机械电气工程学院,新疆 石河子 832000;2. 新疆兵团农业机械重点实验室,新疆 石河子 833200)

作者简介:

毕智健,男,石河子大学在读硕士研究生。

通讯作者:

张若宇(1980—),男,石河子大学副教授,硕士生导师。E-mail:ry248@163.com

中图分类号:

基金项目:

国家自然基金项目(编号:61565016);兵团国际合作项目(编号:2015AH003)


Tomato maturity color discrimination based on machine vision
Author:
Affiliation:

(1. Mechanical and Electrical Engineering College, Shihezi University, Shihezi, Xinjiang 832000, China; 2. The Key Laboratory of Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang 832000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种颜色分析方法用于新鲜番茄分类,以GB 8852—88标准为参考,定义番茄成熟度的分类标准(在研究中将其分成四类:完熟、成熟、半熟、绿熟),将采集到的番茄RGB图像,去除背景后,滤波去噪,转换成HIS颜色模型和HSV颜色模型。通过Matlab编程获取R、G、B、H、S、V、I各颜色分量的均值,运用SPSS软件进行判别筛选组合特征分量,运用Matlab进行判别分析。分析结果显示,绿熟番茄在3种不同判别函数下训练集与验证集判别率均达到了100.00%;半熟番茄训练集判别率最高为94.74%,同时验证集判别率最高达到100%;成熟番茄训练集与验证集判别率最低,分别为76.67%和70.00%;完熟番茄训练集与验证集最高均为90.00%。总体上实现了不同成熟度番茄的判别分类。

    Abstract:

    Tomato quality is one of the most important factors ensured the consistency of tomato market factors. A color analysis method was proposed for classifying the fresh tomato, with reference to the national standard GB 8852—88, defining the classification standards of tomato maturity. In this study, tomato was divided into the four categories, full ripe, ripe, half ripe, and green ripe. RGB images of tomato were collected, removing the background and filtering de-noising, and then they were converted to HIS and HSV color models. Through the MATLAB programming, the mean values of the color components R, G, B, H, S, V, and I were obtained, and the determination and selection of combination components were carried on using SPSS software. Moreover, the discriminant analyses were then performed using Matlab. The results showed that the identification rates of the green ripe and validation sets were the best of all the three different discriminant functions, reached 100.00%, and the highest discrimination rates of half ripe tomato set was 94.74%. However, the identification rates of training and validation sets of ripe tomato were the lowest, identified as 76.67% and 70.00%, respectively. Those of the training and validation sets of full ripe were the highest, about 90.00%. In general, the discrimination and classification of tomato with different maturity were realized using the machine recognition system in the present study.

    参考文献
    相似文献
    引证文献
引用本文

毕智健,张若宇,齐妍杰,等.基于机器视觉的番茄成熟度颜色判别[J].食品与机械,2016,32(12):133-136.
BIZhijian, ZHANGRuoyu, QIYanjie, et al. Tomato maturity color discrimination based on machine vision[J]. Food & Machinery,2016,32(12):133-136.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-09-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。