玉露香梨可溶性固形物近红外漫透射光谱在线检测
CSTR:
作者:
作者单位:

(1. 华东交通大学,江西 南昌 330013;2. 光机电技术及应用研究所,江西 南昌 330013)

作者简介:

刘燕德(1967—),女,华东交通大学教授,博士,博士生导师。E-mail: jxliuyd@163.com

通讯作者:

中图分类号:

基金项目:

“十二五”国家863计划课题(编号:SS2012AA101306);江西省优势科技创新团队建设计划项目(编号:20153BCB24002);南方山地果园智能化管理技术与装备协同创新中心(编号:赣教高字[2014]60号)


Online detection of soluble solids contents for “Yuluxiang” pear by visible-near infrared diffuse transmission spectroscopy
Author:
Affiliation:

(1. East China Jiaotong University, Nanchang, Jiangxi 330013, China;2. Institute of Optical and Electrical Machinery Technology and Application, Nanchang, Jiangxi 330013, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用近红外漫透射光谱技术探索玉露香梨可溶性固形物在线无损检测的可行性。358个试验样本被分成建模集和预测集(269∶89),分别用于建立模型和验证模型的预测能力。通过对玉露香梨样品近红外漫透射光谱分析发现,样品光谱在625,725,800 nm处存在3个波峰,在673,765,825 nm处存在3个波谷。通过对比不同预处理方法,发现漫透射近红外光谱分别经一阶微分、移动窗口平滑和多元散射校正组合预处理后建立的模型效果最好。结合组合预处理方法建立了偏最小二乘和偏最小二乘支持向量机预测模型,经比较,偏最小二乘支持向量机模型预测能力更强,模型预测均方根误差和相关系数分别为0.316%和0.949。对比发现主成分分析和径向基函数有利于提高最小二乘支持向量机模型的预测能力。试验结果表明采用近红外漫透射光谱技术结合最小二乘支持向量机算法,实现了玉露香梨可溶性固形物在线无损检测。

    Abstract:

    The feasibility was investigated for online detection of soluble solids content (SSC) of “Yuluxiang” pear by visible-near infrared (visible-NIR) diffuse transmittance spectroscopy. 358 samples were divided into the calibration and prediction sets (269∶89) for developing calibration models and assessing their performance. By analyzing, the Vis-NIR transmission spectra of 'YuLuxiang' pears have three peaks at 625 nm, 725 nm and 800 nm and three troughs at 625 nm, 725 nm and 800 nm, respectively. Different preprocessing approaches were tested, it was found that the best approaches were the combination of first derivative (1D), smoothing and multiplicative scattering correction (MSC) preprocessing methods. The partial least square (PLS) regression and least square support vector machine (LS-SVM) models were developed with the pretreatment methods by the combination of first derivative (1D), smoothing and multiplicative scattering correction (MSC). The new samples of the prediction set were applied to evaluate the performance of the models. Compared with PLS model, the performance of LS-SVM model was better with the root mean square error of prediction (RMSEP) of 0.316% and the correlation coefficient of prediction of 0.949. And the spectral dimension reduction method of principal component analysis (PCA) and the kernel function of radial basis function (RBF) were suitable to improve the predictive ability of the LS-SVM model. The results suggested that it was feasible for online detection of SSC of ‘Yuluxiang’ pear by visible-NIR diffuse transmission spectroscopy combined with LS-SVM algorithm. The online detection of soluble solids content (SSC) of “Yuluxiang” pear by visible-near infrared (visible-NIR) diffuse transmittance spectroscopy was demonstrated.

    参考文献
    相似文献
    引证文献
引用本文

刘燕德,朱丹宁,吴明明,等.玉露香梨可溶性固形物近红外漫透射光谱在线检测[J].食品与机械,2016,32(10):115-119,163.
LIUYande, ZHUDanning, WUMingming, et al. Online detection of soluble solids contents for “Yuluxiang” pear by visible-near infrared diffuse transmission spectroscopy[J]. Food & Machinery,2016,32(10):115-119,163.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。