基于SOM和SVM的食醋品质近红外定性分析
CSTR:
作者:
作者单位:

(1. 华东交通大学机电工程学院,江西 南昌 330013;2. 江苏大学食品与生物工程学院,江苏 镇江 212013)

作者简介:

郝勇(1978—),男,华东交通大学机电工程学院,副教授,博士后。E-mail:haonm@163.com

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(编号:21265006,31171697)


Research on qualitative analysis of vinegar by using near-infrared spectroscopy combined with SOM and SVM
Author:
Affiliation:

(1. College of Mechanical and Electronic Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China; 2. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究近红外光谱(near-infrared spectroscopy,NIRS)结合自组织映射(self-organization mapping, SOM)和支持向量机(support vector machine,SVM)用于食醋酿造年份和品牌的判别分析。连续小波变换(continuous wavelet transform,CWT)用于光谱预处理;主成分分析(principal component analysis,PCA)用于食醋光谱降维和样品空间分布分析。结果表明:CWT预处理可以有效消除食醋光谱的平移误差;PCA可以极大地减少光谱变量,提高建模效率;对于食醋酿造年份的识别,采用CWT—PCA—SOM的正确识别率(correct recognition rate,CRR)为97.37%,采用CWT—PCA—SVM的CRR为100%;对于食醋品牌的鉴别,CWT—PCA—SOM和CWT—PCA—SVM两种方法的CRR均为100%。近红外光谱结合CWT—PCA—SOM和CWT—PCA—SVM方法在食醋酿造年份及其品牌鉴别中均得到很好的分析结果,该方法具有良好的应用前景。

    Abstract:

    Near-infrared spectroscopy (NIRS) combined with two discriminative analysis methods including self-organization mapping (SOM) and support vector machine (SVM) were used for discriminant analysis of vinegar with different production year and brand. Continuous wavelet transform (CWT) was adopted for spectra preprocessing. Principal component analysis (PCA) was used for spectra dimension reduction and space distribution analysis. The results shown that CWT can effective eliminate spectra translation error. PCA can greatly reduce characteristic spectrum variables and improve modeling efficiency. For identification of vinegar with different production year, the CWT-PCA-SOM method can get 97.37% correct recognition rate (CRR), and the CWT-PCA-SVM method can get 100% CRR. For identification of vinegar brand, the CWT-PCA-SOM and CWT-PCA-SVM methods can obtain 100% CRR. Near-infrared spectroscopy combined with CWT-PCA-SOM and CWT-PCA-SVM methods can both obtain better analysis results for identification of vinegar with different production year and brand, and this method has good application prospect.

    参考文献
    相似文献
    引证文献
引用本文

郝勇,赵翔,温钦华,等.基于SOM和SVM的食醋品质近红外定性分析[J].食品与机械,2016,32(5):48-52.
HAOYong, ZHAOXiang, WENQinhua, et al. Research on qualitative analysis of vinegar by using near-infrared spectroscopy combined with SOM and SVM[J]. Food & Machinery,2016,32(5):48-52.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。