基于神经网络—生长动力学模型对DM423生物量的软测量
CSTR:
作者:
作者单位:

(1. 邵阳学院生物与化学工程系,湖南 邵阳 422000;2. 湖南豆制品加工技术基础研究基地,湖南 邵阳 422000;3. 华南理工大学轻化工研究所,广东 广州 510640)

作者简介:

李冰(1972—),华南理工大学教授,博士生导师。E-mail:bli@scut.edu.cn

通讯作者:

中图分类号:

基金项目:

曾祥燕,男,邵阳学院副教授,硕士。


Hybrid neural network based on software measurement for DM423 biomass during batch cultivation
Author:
Affiliation:

(1.Department of Biology and Chemical Engineering, Shaoyang University, Shaoyang, Hunan 422000, China; 2. Soybean Processing Techniques of the Application and Basic Research Base in Hunan Province, Shaoyang, Hunan 422000, China; 3. Institute of Light Industry & Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以温度、培养时间、溶氧量、pH和葡萄糖浓度为输入变量,生物量浓度为输出变量,研究5-5-1静态多层前馈网络和神经网络—生长动力学两种模型估算的精确度。结果表明:静态多层前馈网络测试样本均方差为1.73×10-3,而神经网络—生长动力学混合模型测试样本均方差为0.25×10-3,其估算精确度优于单独使用静态多层前馈网络对生物量进行估算,动力学模型有较好的泛化能力。

    Abstract:

    The biomass concentration estimated by the static feedforward multiplayer neural network of 5-5-1 topology and hybrid neural network - microbe growth model with five inputs of culture time, temperature, pH and dissolved oxygen and glucose concentration. The result showed that the static feedforward multiplayer neural network mean squared error (MSE) of testing samples 1.73×10-3. And hybrid neural network - microbe growth model offered a much better generalization accuracy than that of single neural network model, with MSE of testing samples of 0.25×10-3, it was found that there was some deviation between estimated biomass and actual values while microbe were growing in the stationary phase.

    参考文献
    相似文献
    引证文献
引用本文

曾祥燕,赵良忠,李冰,等.基于神经网络—生长动力学模型对DM423生物量的软测量[J].食品与机械,2016,32(5):30-33.
ZENGXiangyan, ZHAOLiangzhong, LIBing, et al. Hybrid neural network based on software measurement for DM423 biomass during batch cultivation[J]. Food & Machinery,2016,32(5):30-33.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-01-05
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
文章二维码