近红外光谱技术结合支持向量机对食用醋品牌溯源的研究
CSTR:
作者:
作者单位:

(1. 上海海事大学信息工程学院,上海 201306;2. 上海理工大学医疗器械与食品学院,上海 200093;3. 长沙理工大学化学与生物工程学院,湖南 长沙 410114)

作者简介:

刘静(1979—),女,上海海事大学副教授,博士。E-mail:jingliu@shmtu.edu.cn

通讯作者:

中图分类号:

基金项目:

上海市自然科学基金(编号:14ZR1419200)


Research on vinegar brand traceability based on near infrared spectrum
Author:
Affiliation:

(1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; 2. School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 3. School of Chemistry and Biology Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究近红外光谱技术对食用醋品牌进行快速无损溯源。收集市场上保宁、东湖、恒顺、镇江4个品种共152份具有代表性的食用醋样品,采集它们的近红外光谱数据,对原始光谱数据进行多元散射校正(multip,licative scatter corrertion,MSC)预处理,对预处理后的光谱数据利用主成分分析法(principal component analysis,PCA)进行聚类分析,根据主成分的累计贡献率选取主成分数,然后用支持向量机(support vector machine,SVM)建立预测模型,选取合适的 SVM核函数,并利用粒子群优化算法(particle swarm optimization,PSO)优化模型参数。结果表明,近红外光谱技术结合支持向量机对食用醋品牌分类正确率可达100%。

    Abstract:

    Presented a fast and non-destructive method for the discrimination of vinegar brands by near-infrared spectroscopy technology. One hundred and fifty-two representative samples of vinegar including Bao Ning, East Lake, Heng Shun, Zhenjiang were collected from market. Multiplicative Scatter Correction (MSC) was used to handle the original near infrared spectrum (NIR) data and Principal Component Analysis (PCA) was used to process the spectral data after pretreatment according to the accumulative contribution rate of principal components to select principal components. Support Vector Machine (SVM) was then applied to build the brand traceability model with proper kernel function. Particle Swarm Optimization was applied to optimize the parameters of the model. The experiments indicated that the method combing near infrared spectroscopy with support vector machine could classify the vinegar brand with 100% accuracy.

    参考文献
    相似文献
    引证文献
引用本文

刘静,管骁,易翠平.近红外光谱技术结合支持向量机对食用醋品牌溯源的研究[J].食品与机械,2016,32(1):38-40.
LIUJing, GUANXiao, YICuiping. Research on vinegar brand traceability based on near infrared spectrum[J]. Food & Machinery,2016,32(1):38-40.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-09-18
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-26
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。