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Abstract: [ Objective] To explore the key non-ribosomal peptide synthetase (NRPS) genes of the active peptide Asp-Leu-Ala-Pro (DLAP)
with angiotensin-converting enzyme (ACE) inhibitory activity identified from the mycelia of Ganoderma sinense. [ Methods] The effects of
key NRPS genes on the synthesis of DLAP are analyzed by PEG-mediated genetic transformation experiment, real-time fluorescence
quantitative PCR (qQRT-PCR), and high performance liquid chromatography (HPLC). [ Results] qRT-PCR results reveal that compared with
the wild type, the silenced transformants of GSI_00900 have the reductions of 44.99%, 68.88%, and 66.17% in the expression level of this
gene. The three silenced transformants of GSI 10299 show the reductions of 74.11%, 78.01%, and 75.76% in the expression level of this
gene. The two silenced transformants of GSI 10830 present reductions of 30.55% and 76.99%, and those of GSI 11441 exhibit the
expression declines ranging from 19.43% to 84.80%. HPLC results indicate that the DLAP content in each positive transformant was lower
than that in the wild type (P<C0.05). [Conclusion] These four NRPS genes (GSI_00900, GSI 10299, GSI_10830, and GSI _11441) play a
crucial role in the synthesis of DLAP.
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52 (Ganoderma sinense) & 1 [E 35 44 1 £ 25 1 KB
LI, TEAR L B )02 F T AL G R A v, B iR o £ e
TR FRVERDY S PG 2B 9T R 0T, A28 2 v B B 5
[ 2B A A AR 0 MRS 2 RS M L
HAGMRE Y B ™ HRs O s bomt VA
AEFRTIRE T T RO — O A M HLAAR 1 2B A B AT 25 B
BA R RZEAEY , W 2~20 4> B LA R 21
TR S 7 =G G, AR XS 43 7 BT /N, & 40 T P RS
B AR TBIRAL AL B L b S s . R E H R,
B 20 WAL S WIS £, W OC TR PR KT
) 38 AH X B D

YA, 4t B 20% W9 AR R A i, 3 B
AT 45% W0 I B AL T S 1% 19 KL T )2
RS2 Y s A 1) NG <Y iR o 2.9 L = s
A S R IR 25 R T R BAOET  HTR —RE
ATy e N BT 24 o o I B )2 e SR ]
FH FL D - 92 A i B2 B 1 4 5 5K R 7% fk T (angiotensin
ACE) i il Jik E E & 4f
LSMGSASLSP'"' | AHEPVK'"?' | KIGSRSRFDVT'" i
GEP!' % | 3 88 ACE 1 il ik 19 A0 XF 43 F i & ¥ /b T
3 000, Ja A B IC, (B AR , HAT HEAE A B UL TR DI 2. W
SIS R B R B TR 22 R b B IR 3 R LA S R I
PEY ACE Ml ik, B QLVP .QDVL A1 QLDL. i, W&
2 FH LT Hh k) & Y R AR ACE $0 i K B % B R It IR L3R T
o I AR R 2 o I R K R R A A S IR ok
U5 22 4 g 26 1 WA AR ) R T R AR A B A K B T
(non-ribosomal peptide synthetase, NRPS) 3 Ff J5 3 .
NRPS /i 5 I B 28 R A 75 ZEHBAR RNA 12 5,2 B
T 25 H 300 B 5 FLHE Y 7E NRPS ok s e | i AL 4
AR 1 3 A% 0 Ty R 5 0 SR i, B I TR Ak 45 i SR
(adenylation domain, A domain) . Bk Bt 2% /& 2 (5 45 #4 3¢
(peptidyl carrier protein domain, PCP domain) 45 & 45 ¥4

converting enzyme,

1} (condensation domain, C domain) , H: ' A domain 1 7%
AT W b o o e MR B A B BR , AE ATPAE I TG LR W)
A AH B R 2 E -AMP; B2 5 T AL & L BE-AMP 5
PCP domain I i I &5 &, JE LA L BE-S- 201K 2 5 W0 5 7
i 33 C domain fi# 1k & LR 22 [ BBk e 'Y, Zhu S5
fRMT 7 AR A B, R TR S 5 AR
AEAZME R IR G BL NRPS SE 7% . 76 0L 3l I, R4 7
B2 R BT 22 Ak b oy E Al Ak B — BhET T A9 ACE 1 41
ik Asp-Leu-Ala-Pro(DLAP) , Jf- i B It K 2 Hh F 2 b
PR A U 3 AR S . W 9 8L SR A TR U0 R B R i A
NRPS 3 K X DLAP A& i 1) 52 Wi, DL IH by ifF — 25 #iF 5% K A
LA PN T S O 1) B 9 s AL ) R A P AR A
LB 7
1.1 &

ML~ K F . FA2004 B, 11 2% T 4H 7 B = AU A% A KR
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/A

Il

RO A2, 3% Y . LC-6A B, H A% Shimadzu 23 7 ;
B2 T L SCIENTZ-18 B, 7 il 7 2 = W B
HARAF

¢ 36 52 1 PCR Y : 7500 %Y , 5% [/ Applied Biosystems
NEIR

L2 KT B HE-120 80, LI KRERMH A PR A 5

B 2 E AR 5 HZQ-F280 %Y, K A i1 A 25 4 Ak AY
.
1.2 BEHRERM

B (CGMCC5.0069) + H [E 5 38 34 4 ) 3 kAR
g H L (bR

KB AT 18 8% 32 25 40 i DHS o pTriEx™-4 ; bt 57 2 Bl 4
PR BRA A

L T8k 2 7k pCAMBIA1300T ( & 4 CaMV 35S #il
CmGPD R 8 F) : S5 2 Ay .
13 FERAFNGERE

SR O T, BB T A AR A R
NI

W RENE : 200 U/mg, )7 AR A B B AR W F 5T

AN EHR FMER WHE 04, 1L ik
AR AT BR A W

59 3 -p-D- B AR 2F: FLBE 1 (IPTG) : 43 By 46, 3% =
Sigma-Aldrich /3 7] ;
FE W R 2 3 ) & (MAK 168 %) « 2% [ Sigma-Aldrich

b
k=N

DNA #E 5 [ i 18 7 & (N1073 289 ) | ks /I B 42 B0
A& (N1013 B N AR B AE W BHE A BR AN Al

RNA #EBGAF £ (TCHO20 %) : H 7K TaKaRa Bio 23 ;

LB A8 3235 5098 10.0 g, B A 10.0 g, BE AR RS
5.0 g, 56N 800 mL 7% 18 /K ¥ % J5 , J1l NaOH ¥ pH {H &
7.2~7.4, A E 1000 mL, 121 ‘CKE 20 min;

T~ 15 9% i - U Q8 25 W AR 5 97 (SDB) |, ¥ i A=
W AR A RA T

KW SR I  OTYA PEVE RS 41.0 ¢, NH,C15.0 g, /B &
B, 0.05 g,K,HPO, 1.5 g, % fi# T 800 mL Z5 1R /K , 5t 5 $i
Y1415 ,pH 18 & 5.8~6.0, F 4 £ 1 000 mL, 121 ‘CK
20 min;

MY G R 15 57 k- TR 2F B 10.0 g, A 45 Bk 4.0 g,
B K 4.0 g, % T 800 mL 75 0.6 mol/L H ¥ B2 1B K4 &
F b, FE G E 252 1 000 mL, 121 ‘CK 4 20 min;

MYG [ #4155 55 58 BREUEZ 2808 10.0 ¢, W45 05 4.0 g,
T BEHS 4.0 g, BB 15.0 g, % T 800 mL 7 0.6 mol/L H &
B8 3% R Fao Al FE 00 W AR5 8 45 2 1 000 mL, 121 °C
K 20 min,

14 #£Z &K DLAP KX % NRPS EE 9%
T # NCBI L {4 2 2 (CGMCC5.0069) 4= 3t [ 41 )¢
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G, 3 A ZE anti-SMASH K 2 A 7 P 5040 15 45 5 NRPS
KR, NRPS K F Y A domain 8 1% 1 5 AL IE S 1 2 5t
T2, % UG AR I 7 W 0 5 A R 2 e PEAE T L R
A domain 1 — YT A GOk i 6 O NRPS E[H . R H
NRPS predictor 2 #0447 % NRPS 2£ A A domain #F17
U B2 e AT v M T

HEHE O (4 25 5 9647 A domain 20 2 (15 S 238 12
alifb, HA 5 B8k - A H = Ok 5 2R A i (ApexHF HS DNA
Polymerase FL)#" 34 A domain F Bt , PCR 12 5 45 5 , iF
A1 B NG B BE I 56 3UE I 2F A7 I R, DU AT His 45 28 1Y
pTriEx™-4 Jy 3% 1A , {# ] Sac I #l Kpn I 7F 47 UV, 12 0]
WO A7 % 85 3R A3 69 A domain i BE MR 1 1k 2% K 8
ik [ YRR 3 2 g AT 4 T T W L B R IG AT
T DH S /%32 25 AI I v, 45 BE 2 T 8 7 2% 28 460 0 AL A 0 )57
I LR A7 G Rl B I Y IE A 04 B R BB S N R K T
BL21 41 fg v, B V& K S 76 & A 20N Pk iy LB R A B
FEHE P RS IR W ZE OD{H M 0.6~0.8, F- N A% F #I IPTG,
fdi L2 Mk B 2 0.5 mmol/L,28 °C 200 r/min 55 12 h, S
S5O 8T ARAE S RZ AT 7 1k 44k A domain AL .

AR Sk [20] 0 77 36 A0 A Bl R U0 & (MAK 168
AL 1) 18 B TC ) 4 IR WS, A 2 S B AR A FE A=
316 nm Fl A, =456 nm T I 5 28 5 0 i B, 7 AR 5 £5 %
Tz 5 (PP1) Ay B o M 43+ 5 18 B A B g TR A5 W v 2B B PP
B B, I8 77 A B K PP M 1 R R R L I AR R,
AR5 2 100% o
1.5 ZEZMXBENRPSERMERBEHHAE

PLZA #i #E NCBI _E 922 (CGMCC5.0069) JE K 41 ¢
51| Jg 4R # , SnapGene ¥ it NRPS 3 K| GSI 00900, GSI_
10299 .GSI_10830 F GSI_11441 TR Fr Bt (250 bp) 89 £ F
UiF PCRY™ 54 . DL DNA S HA , 4 18 o 0% ELRE Y
Ui B P W2 ) B2 7 1A 2R B PCR 2 b 72 5 9388 H B 4541, 4%
S TET A 4 L B B — E I 4%l (250 bp) IR AE F 4 Cok
s M. 0 BamH 1 F1 Xba 1 KR &4k P 4 X R R
pCAMBIA1300T 3 17 XLEG VI , B V1 7 9y 28 35 i B A% 12
VkJE L 1 H DNA B e a1t ) & ik 26 14 4k pCAMBIA L
300T 2K . FF b 3RAT Y 4 Fh 3L DA A9 DT ER A BE (250 bp)
R AL B oy 4% 12 LIRSS, 2R ) 50 o4 422 iy 7
37 Ci% 4% 30 min, 3845 GSI_00900 .GSI 10299 .GSI 10830
I GSI_11441 4 Ff NRPS 5E N W DBk E AL ki . SR )5 0%
it 3% 7 0 6 A B K AT B R 25 AN I DHS o, P38 2o
PCR §" 14 Fl DN A Il ¥ £ 47 86 41F
1.6 EER4REMNH&

2 B AR AR UM O Ik £ 5 2 IR AR R RS 1
P W I UG T R S T SDA MBS g L B iR Ak 5~7 d
(28 “C)J , F-fe FH oo ik 2R A1 19 3 b 0 I 3~5 B4 5 R/
[ T B % SDB WK B 37 S b i 8 15 5% 5~7 d, B 12 h
FIZIR S 1R . B3R5 s, ) E 1 50 mL JC 1 &5 .0

BB % . X8 NRPSEEX L ZE MM DLAP & K AN

B WO T 22K R 0.6 mol/L Y H 7R B I TR Uk 3 O
FREE , 4% EC B B A BE B (300 mg/mL) , F 30 °C #f f#
2.5 ho ARSI L ST BRSO S 2 AR AL BT I R
kb 20 B B, 914326 3 2 mL JC 250 L4 °C .4 000 r/min
B30 10 min, YA J5UAE AR, k2 A | mL 9 0.6 mol/L
R WL Uk 3~5 vk, BIVAT AR A5 ) 4R 00 I AR AR
1.7 PEGNESEMEENL

2 MR AR S I AR T W R AT R R 8 T 4
BB B 8 2 AR R B R T 1 mL STC 28 #h il 7 (100 mL
STC ZE wh ¥ h & 45 0.74 g CaCl,,21.86 g LI AL, 1 mol/L
Tris-HCI,pH Jy 7.5) , filfi H ¥ BE g 1 X 10°~1 X 10°4~/mL,
SRIG A A 4 Bl UL IR AL FORE 1.0 pg, 55 3% — 4 A i 5k
PRI B A 50 pL B9 PEG ¥ (100 mL PEG 28 i h
& 47 0.74 g CaCl,, 25.0 g PEG 4000, 0.6 mol/L 1 §% i ,
1 mol/L Tris-HCI,pH & 7.5) , 843121 )5 , K 30 min,
fim A1 mL B PEG % W& , % i T A& 25 min 5,4 C .
4 000 r/min & .0> 15 min, WEDIE , A 5 mL MYG # {&
PR FR I 28 “CRPE B 9% 3 dJR I T % 50 pg/mL Hyg
B MYG [ A5 b b, 28 CREFR 10 d, K I E TR S .
PRI A B V5 76 50 pg/mL Hyg 19 SDA K535 58 R4k
1.8 W HMERINEZ DNA

Z BT P55 10 DNA 4 BU 35 IR 1B 38 2 0 % < 75
1.5 mL EP % 1 fin A 50 uL 50 mmol/L fi§ NaOH ¥ & , #k B
B A UL Ak 00 TR 22 A (L o 3k B B 37 3 ) 5 BV W 32
RA,98 CH# 10 min, ¥ #J5 T A 2.5 pL /9 1 mol/L
Tris-HCI(pH 7.5) Z th % W i AL, 12 000 X g B5.0> 5 min, I
A R, B AL T DNA BIAR .
1.9 BEELTFHETE

HREHE 2% 7&K pCAMBIA1300T By il 25 Z F 41, B3t = F
W51 94 5 A . S-ATGAAAAAGCCTGAACTCACCGC-
3, 5-TTTCTTTGCCCTCGGACGAGTG-3', Pl iR $#ZHU (K
DNA Jg#itz , A 4f Taq B 1 Ud B 43 C ) )2 B 7Kk &, PCR 3™
R Y N AR R R 94 °C L3R IR BE 56 °C, 4iE il iR
72 °C, A 3L 35 G, PCR 772 9 28 1% B B JIE W 68 Jie Hi
VORI K BE A B A6 F A0 EF AR A B Rl T SDB TR AR 37
Ferp 28 CHEEIRG R 27 d)a, iR & 10% 19t
Bl A FIR B E KRB AP IRERTE 6 d, IR W
1A, 43 531 5 T BH 1 2 A 7 R T A R 22 1 Y B RNA F
S SR & B 5o ¢cDNA 3l i qRT-PCR 7 46 0 5%
b F1 BT A= T G A b Bk IR 9 RE X R A . %6 2 NRPS
W GSI_00900 . GSI_10299 . GSI_10830 1 GSI_11441 )
qQRT-PCR ¥ 84 | FiiFg| 9 W3 1, W23 BTU W i 1%
F F W 51 % N 5-CTATTTCTTTGCCCTCGGAC-3',
5-ATGAAAAAGCCTGAACTCACC-3', JZ Jif 7k & F1 2§k
&% B % qPCR SYBR Green Pro Tag HS Mix (% Rox) it B
PO SRR A ) TR A RS /D AT 27Tk
THE IR A AR ik Y
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Fz1 4% NRPSERE M qRT-PCR #1551
Table 1 qRT-PCR primer sequences of four NRPS genes
EIE7E il i A AR
GSI_00900-F CGCTGGAGGAAGTAGATGG 19
GSI_00900-R CTTGTCAAAGGTCGTGGG 18
GSI_10299-F CTTGTCAAAGGTCGTGGG 18
GSI_10299-R ATGTGGAAGGCAAGGTGT 18
GSI_10830-F GGTCAAGGGACGGCACTA 18
GSI_10830-R GGCTCCGAAGAACAAAGG 18
GSI _11441-F AGATGATTTACGGCGTCCCA 20
GSI_11441-R CGGTCTCCGATTTGCTTGTT 20
1.10 &M DLAP I EIHE & K

DLAP (947 # & J2 th Z8 80t R BHE O 3D A BRA
) [ A A, AR 2D B PREL 0.3 g Y 2-5 = R L
S B g (2-chlorotrityl chloride resin) , B A W 25 8 7, i
A 4 W kB (dichloromethane, DCM) ili 3 I 1 ik | 14+
15 min, $8 J5 3 BB 25 DCM, I N, N-— 7 5 Y ez (N, N-
dimethylformamide, DMF) % ¥4 g 4 1K, fie 5 B 22 DMF,
# o BRI 3% 5 R B 19 Fmoc-L-Pro-OH | 1-F5 3 K Jf:
=k (1-hydroxybenzotriazole, HOBt) . 1, 3- — 5 P Bk ik —
WV j% (N, N-diisopropylcarbodiimide , DIC) it A #| Jz i %% %
L ARZE A 3 A EE AR TR 9 N, N- 5 3k S (N, N-
diisopropylethylamine, DIPEA) . DMF F1 DCM, #F £z #ii $f
6 WG 5 DR WR L HINASRBEN RN O kY
FH 2 %) R 5 W, T 30 min T, 3 BR T A WK T DMF
RNV 3. R INA & A 20% WR IE (piperidine , PIP)
i) DMF ¥ W 78 40 1 A J5 &1 B 20 min, DLUAE BR 5 W88 45 &
19 Of 37 5L A (Fmoc) | 81 3 1 2% 571 J5 L 55 1l DMF % %
20, B R 2 I B B A 1K, 45 3 Fmoce-
L-Pro-Resin, & iR #:4E , {K K #t 47 Fmoc-L-Phe-OH
Fl Fmoc-L-Ala-OH 5 B lig i 4 156 5 /%, 735 B A (8 B 72
455, H DMF R R 5k, BRI 21K, =R O TR
Ak BRI , B0 345 DLAP ML &, B 5 JTT HPLC 46 f¢ DLAP

M 1 2 3 4 M 1 2 3 4
180 000
130 000 150000
95 000
95 000
70 000 25 000
53000 : 53000
40000
33000 40 000 == =
33000
25000
25000

(a) GSI_00900
M. & FUARUE &

(b) GSI_10299

A1
Figure 1
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HEAERE 5% LI,
111 #HEFREZRIEF=HWHHPLC 7

REEEE AT, FHZE K vk 3~5 1k, 50 mL & .0 & I 4
2R, B UR TR T (—80°C, 100 Pa,48 h) , FRHK
100 mg % T B 221K, N A 1.5 mL T4 1) Z& 08 7K 78 50 ik 8
4°C 12 000X g #.0> 20 min Ji7 , WA L IE W, BN 82 21K
KA IO o AR SClk [15 ] HR 3 19 22 Ik 43 88 ORI
28 % | Pk — A FH Symmetry-C 4 (250 mm X 4.6 mm i.d,
5 pm, Waters, Elstree, 137 UKD B3 22k F g BRI, 6
TEAE N B 0.8 mL/min, K I 9% 4 220 nm, i S AH A £
JIE (% 0.03% = J L) FAB 4K (% 0.04% =T ZFR) , &
M) 25 min, 354 20 L, e T : 0~5 min, 0% Z A% ; 5~
20 min, S H I K 0% Ze PR3 i 2 90%;20~25 min, 100%
CNE o LA A B DLAP N AR v &, bL 4 85 A 50 BH
AL T DLAP [ W5 J3 F i FH
2 #R50br
2.1 E£ZE A DLAP KX NRPS E F K ik

Sk U 1 58 2 A B Tk K DLAP B G5 NRPS L[4,
B 25 F H NRPS predictor 2 W 3 X 48 2 BT 45 NRPS 3 [H 1)
A domain FF AT i) 2 Jk 2 A0 1) 4 00, 5000 25 S W, Sk
GSI 00900, GSI 10299, GSI 10830 FI GSI 11441 i) A
25 Mg 30 2H T E Ik DLAP 49 2% 25 2 (Asp . Leu ., Ala Fil
Pro) FLA — & MM 1) 1, U0 2 2 BT s, {HLT00000 45 2R 174 7
PR Tl T IR — A R UE . AR LA 2 R AR A
25 53 o) b IS A R GR R R, T Ak IR Al Ak H 4 Fip

R2 AT NRPSEE A 25135 B9 K 91 15 1= 1%
Table 2 Substrate preference of A domains of four NRPS

genes
NRPS FE K 19 A 45 F4) 5 NRPS predictor 2 Fi il (1 Ji& 4
GSI_00900 Gly.Ala.Val.Leu.lIle
GSI 10299 Gly.Ala.Val.Leu.lIle
GSI_10830 Asp.Asn . Glu.GIn.Pro
GSI 11441 Gly.Ala.Val Leu.Ile .Pro
M 1 2 3 4 M 1 2 3 4
180 000 180 000
130 000
95 000
95 000 70 000
70 000 = &
53 000
53000 -
40 000 J— -—
40 000 33 000
33 000
25000
25 000

(¢) GSI_10830 (d) GSI_11441

LIPTGESE M8 2. IPTGIERRIMEIK 3. IPTGIES/E MMM 4. difb/5 &N
4FF NRPS A F A 4 Mk uh & G #iit

Protein purification of the A domains of four NRPS genes
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1207
100+ _
g
w2 80
st
S F 60F
= £
TE 40
[a=}
207 H H
0 ‘ ‘ s L
Val

Asp Leu Ala P  Glu Gly
AR
Amion acid
(a) GSI_00900
1201

1001 i
80r

601

LA

Asp Leu Ala  Pwo  Glu Gly
Amion acid

(e) GSI_10830

AH T T P
Relative activity/%

Val

HIH#% X8 NRPS B E X 222 & Ak DLAP & B BT 721

1207
1001
801
601

40t

A X A
Relative activity/%

20+

oﬂ‘ ‘H‘m‘!_\‘ﬂ‘ﬁ‘

Asp Leu Ala Pwo Glu Gly Val

AR
Amion acid
(b) GSI_10299
1201
100+
80+
60+

LEROREEES
Relative activity/%

40t
1 H
0 I I I [ ’_‘ |

Asp Leu Ala Pro  Glu Gly Val
Amion acid

(d) GSI_11441

B2 4% NRPS & B A 25 4 3% 09 & 4 47 1t
Figure 2 Substrate preference of the A domains of four NRPS genes

NRPS A& [H A 50 380 0 25 1, 0T A Bl 1R 330 & A6l A
250 B AR X S A R Y ) P 2 R R, R A
GSI_00900. GSI_10299 . GSI_10830 Fl GSI_11441 1) % 1E
FIBRIEY) N Ala.Leu.Pro il Asp. &7 AY AF 57291 18
NRPS predictor 2 Tl i) 25 2R 25 5K 50 45 A7 £ 22 5%, 0]
fit /& A & NRPS predictor 2 3 ZEAK fiit A &5 #48 h 10 4> ¢
S AT o5 4 LA 1) Stachelhaus X 6% X T50I0 i 490 i 1v) 14
TEIEAS R BT A A S5 AL B ™ 4% 50 X A0, F 2R

\

RNAi: pCAMBIA1300T-pGPD-355-11441

10545 bp

Camy 355 promoter
M3 e

(a) FEFGSI_114410)7TER T 40 ok ik

M. DNA S F IR/ B L BHPEXTIR 2. %8 1 s %
T 6 ATEVE 8B TANTEYE 9. 5B 8N TVE
A3

LB 2AATEYE 4 BB 3T
10. 55 9B U5
KW GSI 11441 8930 % F 20 45 B #% % PCR B4

UMK AT H Al A 3 AU (37 o BT 52 T Y RS A
Stachelhaus A% > 4 W fiw AR S M BAT — 7 19 R B
22 EEMBREARNMNEE

SR T [R) 5B % 22 b 48 2 NRPS JE (19 U8R v BL Al
2 A O A A i I 3 22 7 W) B A B I AT T U
S A5 AN DHS e H, FH R [R5 B 14 5 | 90 % R 1 A T 20 7
HEAT PCR B0 HiE , K 07 32 1109 BH 14 5 B 7 3% 2220 T2E 9 T 72
(L0 ) ey 5 PR R0, 00y 435 2R 5 OO AH 4, E ] 8

M 1 2 3 45

6 7 8 910

(b) JEFGSI_1144 1% 575 % T B & PCRAGI
S ANETE 6. S REVE

Figure 3  Silenced recombinant plasmid map and PCR validation of GSI 11441
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2 NRPS % K GSI_00900,GSI_10299 . GSI_10830 Fl GSI_
11441 UK T 41 50K AL 2 BTy, Q] 3 s (Lh GSI_11441
FEBE R B, I BH M 7 B T O
23 UEKPRMER L F R

VL PEG A1 5 9 J5 vk HE AT 38 1% e b, 37 A6 R A bk A2 &%
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