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Abstract: [ Objective] To propose a deep learning-based method for the freshness determination of winter jujube by dividing the fruit into
five freshness stages, aiming to improve determination accuracy and reduce the influence of light reflection. [ Methods] In this study, a
freshness determination method is proposed for winter jujube by combining an efficient ResNet, an attention mechanism, and Faster R-
CNN. First, ResNet is used for convolutional processing on the image to extract the global feature map. Next, key features are enhanced
through a channel attention module, and multi-scale features are extracted using a feature pyramid network (FPN). Then, Faster R-CNN
selects candidate regions from the features, followed by region of interest (ROI) pooling before inputting to fully connected layers.
Therefore, the model performance is optimized through a multi-angle loss function. The model’s effectiveness is validated using
physicochemical indicators such as hardness, conductivity, as well as vitamin C (VC) and polyphenol content. [Results] In freshness
determination, the improved Faster R-CNN model achieves an accuracy of 98.60%. [ Conclusion] The improved Faster R-CNN model
outperforms existing methods in small-scale samples.
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Figure 1 Winter jujube sample images
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