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人参果损伤的高光谱无损检测方法研究

柏孝燚 1 伍金凤 2 张晋恒 1 周 兵 1

（1. 云南农业大学理学院，云南  昆明   650201； 2. 云南农业大学食品科学技术学院，云南  昆明   650201）

摘要：［目的］实现对人参果损伤程度的准确、无损检测。［方法］通过自由落体碰撞方式制备不同损伤级别的人参果样

本，采集各类样本高光谱数据，分析 4 种不同预处理方法对随机森林（RF）分类模型的影响。采用连续投影算法（SPA）、

竞争性自适应重加权算法（CARS）对预处理后的光谱数据进行特征波长提取，构建偏最小二乘法判别分析（PLS-DA）、

支持向量机（SVM）和 RF 3 种机器学习分类模型并进行对比分析。利用贝叶斯（BO）算法对最优模型的超参数进行寻

优。［结果］标准正态变换（SNV）预处理后模型分级效果最佳，预测集准确率达到 78.89%；特征波长提取后，分级准确率

有所提高，SNV-CARS-RF 模型表现出了最佳分级性能，预测集准确率为 92.78%；最后经 BO 算法对 SNV-CARS-RF 模

型的 4 个超参数完成优化，模型准确率提升至 100％。［结论］使用高光谱技术结合机器学习算法能够实现对不同损伤级

别的人参果准确检测。
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Abstract: ［［Objective］］ To establish a non-destructive method for precise identification of mechanical damage in Solanum muricatum fruits. 

［［Methods］］ The S. muricatum fruit samples exhibiting varying degrees of damage are induced by free-fall collisions, and then the 

hyperspectral data of each sample are collected. The effects of four preprocessing methods on the performance of the random forest (RF) 

classification model are evaluated. The sequential projection algorithm (SPA) and competitive adaptive reweighting algorithm (CARS) are 

used to extract the feature wavelengths of the preprocessed spectral data. Three machine learning-based classification models-partial least 

squares-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest-are constructed and compared. The Bayesian 

optimization (BO) algorithm is employed to optimize the hyperparameters of the best-performing model. ［［Results］］ The model utilizing 

standard normal variate (SNV) preprocessing achieves the highest classification accuracy, which reaches 78.89%. Further enhancement of 

classification accuracy is observed through feature wavelength extraction, and the SNV-CARS-RF model attains the best performance, with 

the accuracy reaching 92.78% on the prediction set. Finally, the BO algorithm is used to optimize four hyperparameters of the SNV-CARS-

RF model, increasing the prediction accuracy to 100%. ［［Conclusion］］ The integration of hyperspectral technology with machine learning 

enables the accurate detection of varying degrees of damage in S. muricatum fruits.
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人参果又名香瓜茄，属茄科作物［1］，果实皮薄肉厚，果

中无核，可食用部分达到 95% 以上，且富含对人体健康有

益的矿质元素、可溶性固形物和氨基酸等［2］。研究［3］发

现，人参果的化学成分以酚酸类化合物居多，提取物也具
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有优异的抗氧化能力。目前，人参果主要种植于青海、甘

肃、新疆、云南、贵州等省（自治区）海拔 1 000~2 200 m 的

地区［4］。随着消费者对健康食品的重视，对人参果品质的

要求也随之提升。然而，人参果在采摘、运输及贮藏等环

节极易遭受挤压、碰撞以及摩擦等外界因素影响，导致果

实出现不同程度的损伤，损伤后果肉会发生褐变、腐烂，降

低商品价值［5］。碰伤果如未能被及时处理，还会增加病菌

侵染正常果的风险［6］，存在潜在食品安全问题。此外，依据

损伤程度的不同，人参果可用于制作饮料、果脯、果酒和饲

料等深加工产品。因此，开展人参果损伤的快速分级检测

研究，对减少经济损失提高其营养价值具有重要意义。

传统的人参果损伤检测方法以人的主观评判为主，

过度依赖经验且难以准确量化。新兴的机器视觉技术可

以检测出果实表面明显褐变或霉变的损伤，在一定程度上

提高了损伤检测效率［7-8］，但机器视觉技术对于碰撞早期，

发生在表皮之下的轻微损伤辨别能力有限。物质的组成

与结构发生变化时，通常会引起其光谱特征的改变，通过

分析对应的光谱响应特性可有效识别和评估物质的损伤

情况，光谱技术的快速发展让果蔬损伤的快速无损检测成

为了可能［9］。其中，高光谱技术能获取目标连续、高分辨

率、多通道数的光谱数据，表达出目标隐藏的有效信息，

且不会对目标造成破坏，被广泛运用于黄瓜［10］、水果玉

米［11］、番茄［12］、桃［13］、葡萄［14］等多种果蔬品质检测中，并取

得了一些成果。近年来，高光谱技术在水果损伤检测中的

应用也有不少报道，Tan 等［15］利用高光谱成像技术结合主

成分分析对 40 个完整苹果和 160 个擦伤苹果早期损伤区

域的正确识别率为 99.1%。袁瑞瑞等［16］利用高光谱技术采

集灵武长枣在损伤级别Ⅰ~Ⅴ的图像数据，运用多种预处

理手段及波段选择方法处理光谱信息，并构建偏最小二乘

判别分析模型进行分类，预测集的准确率为 89.52%。孟庆

龙等［17］以挤压损伤和完好无损猕猴桃为研究对象，利用高

光谱成像技术，结合多元散射校正，主成分分析和 K最近邻

算法建立识别模型，正确识别率为 93.3%。李威等［18］使用

高光谱成像技术结合竞争性自适应重加权-MLR 模型识别

芒果轻微损伤效果最好，准确率达到 97.14%。殷海［19］基于

高光谱成像技术采用主成分分析、竞争性自适应重加权采

样算法结合纹理特征，建立随机森林（random forest，RF）模

型对黄桃碰伤进行检测，总体准确率为 97.25%。以上研究

表明，高光谱技术凭借其快速、无损等优势，在水果损伤检

测领域研究中成效显著，且潜力巨大。

但将高光谱技术应用于人参果损伤检测的研究还鲜

有报道。研究拟以石林人参果为研究对象，通过高光谱

设备进行光谱数据采集，利用多种预处理方法对原始光

谱数据进行处理并建立相应的 RF 模型，通过对比模型评

价指标，选择出最佳的预处理方法。对经过预处理的光

谱 数 据 ，采 用 连 续 投 影 算 法（successive projections 

algorithm，SPA）、竞争性自适应重加权算法（competitive 

adaptive reweighted sampling，CARS）提取特征波长，并使

用特征波长数据建立 3 种机器学习模型，实现对人参果采

摘过程中发生的轻微碰撞损伤进行检测，以获得一种准

确、无损识别人参果碰撞损伤的方法，为开发人参果损伤

在线快速无损检测终端设备和先进分拣流水线提供方法

依据。

1　材料与方法

1.1　试验材料

2024 年 10 月采购于云南昆明石林某果园，为减少其

他无关因素对试验造成的影响，选购形状、大小和成熟度

基本一致、颜色均匀且无病虫害、无霉变和无损伤的人参

果 180 个，试验前将人参果表面清洗干净并进行编号。

1.2　主要仪器设备

地物光谱仪：FieldSpecHandHeld2 型，光谱采集范围

为 325~1 075 nm，光谱采样间隔 1 nm，美国 ASD 公司；

落球冲击试验机：KE-6315 型，肇庆市华和振森试验

机制造有限公司。

1.3　试验方法

1.3.1　 样 本 制 备　 将 180 个 人 参 果 随 机 分 成 试 验 组

（135 个）和对照组（45 个），其中试验组再均分为 3 组，用

于制备不同等级的损伤样本。为模拟人参果在实际采摘

和运输中遭受的不同程度损伤，通过落球冲击试验机调

节下落铁球的质量和高度来控制碰撞力大小［20］，采用控

制变量法设计试验。试验中分别使用不同质量（50，100，

150，200，300 g）的铁球，从不同高度（0.1，0.3，0.5，0.7，

0.9 m）下落进行碰撞测试，并与真实环境及实际生产过程

人参果的损伤情况进行对比，以此确定最佳模拟效果的铁

球质量和下落高度。最终选定质量为 100 g 的金属球，分

别从距离人参果表面 0.3，0.5，0.7 m 的高度自由下落，撞击

试验组人参果赤道区域，模拟实际人参果外部损伤情况。

损伤试验完成后，做好标记，对照组标记为未损伤，从 0.3，

0.5，0.7 m 高度下落进行碰撞得到的试验组样本分别记为

Ⅰ、Ⅱ和Ⅲ级损伤，不同碰伤等级人参果样品如图 1 所示。

人参果从果园采摘到入库前分拣的运输时间在 3 h 左右，

因此将损伤样本放置 3 h，再进行高光谱数据采集。

1.3.2　高光谱数据采集　为避免采集过程中环境光线的

干扰，整个高光谱数据采集过程都在暗室中进行，仅使用

光谱仪自带光源。样本光谱采集前先进行白板标定、优

化，后以黑板为背景逐个测定未损伤人参果样本赤道部

位和损伤人参果样本损伤部位的反射光谱数据。每个人

参果样本选择 3 个点采集，取平均值作为该样本的光谱数

据，用于后续分析使用。

1.3.3　光谱数据预处理方法　因电磁干扰、光的散射等

原因，采集到的高光谱数据可能存在大量与样本自身性

质无关的噪声［21］，因此，在建立人参果损伤判别模型之
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前，需要进行预处理以减少噪声。分别利用多元散射校

正（multiplicative scatter correction，MSC）、标准正态变换

（standard normal variate，SNV）、卷积平滑（savitzky-golary 

smoothing，S-G）和小波变换（wavelet transform，WT）4 种

方法对原始光谱数据进行预处理。其中 MSC 通过建立理

想光谱基准，有效校正由光散射效应引起的偏移和干

扰［22］；SNV 则是基于光谱数据的统计特征进行标准正态

变化来去除光谱中的线性平移影响［23］；S-G 利用多项式拟

合局部光谱窗口，在保持光谱形态特征的同时滤除高频

噪声［24］；WT 采用多尺度分解策略，通过阈值设置处理不

同频段的小波系数实现噪声定向去除［25］。为获得有效的

光谱数据预处理方法，将原始光谱及 4 种方法预处理后的

光谱数据作为输入变量，构建基于 RF 算法的人参果损伤

等级分类模型。通过比较不同预处理方法下模型的分类

性能指标，筛选出最优光谱预处理方法。

1.3.4　特征波长提取方法　高光谱的波段多、维数高，包

含了许多冗余信息［26］。建立人参果损伤判别模型时，若

不进行数据降维，会增加模型的复杂度，导致模型性能下

降。因此，分别利用 SPA 算法和 CARS 算法对预处理后的

光谱数据进行降维，提取特征波长。SPA 算法是一种前向

选择算法，通过选取冗余度最低的波段，使波段间的共线

性最小化［27］。CARS 算法是一种以回归系数为评价指标

的变量选择算法，经过多次迭代计算，剔除误差较大的波

段，选择出最优的波段［28］。

1.3.5　分类模型建立　对原始光谱数据进行预处理和特

征波长提取后，采用偏最小二乘法判别分析（partial least 

squares discriminant analysis，PLS-DA）、支持向量机（sup‐

port vector machine，SVM）和 RF 算 法 建 立 分 类 模 型 。

PLS-DA 是一种结合偏最小二乘回归和判别分析特点，用

于解决光谱、基因等高维数据分类问题的机器学习算法，

在特征数量远大于样本数量的情况下表现出色。SVM 核

心思想是寻找一个超平面作为决策边界，使得不同类别的

数据点尽可能明显地分开，适用于高维空间和复杂数据集

的分类任务。RF 是一种通过集成多棵决策树的分类结果

并采用多数投票的方式确定最终分类结果的集成学习算

法，该算法能够有效提升分类模型的准确性和稳健性［29］。

1.3.6　模型超参数优化　模型超参数是指在模型训练前

人为设定好，用来控制模型学习过程和复杂度的一类参

数，直接影响模型性能和泛化能力，因此，设置适合的超参

数十分关键。采用贝叶斯（bayesian optimization，BO）算法

对人参果损伤分类模型的超参数进行优化。BO 算法优化

是根据已知样本数据的概率代理分布，确定采集函数待评

估点，并更新代理模型的后验分布，不断迭代，直到实现模

型的最优性能为止［30］。相较于传统优化算法，达到相似优

化效果，通常需要的计算资源和采样次数更少［31］。

1.3.7　模型评价标准　为了评估模型的性能，采用预测

集的召回率、查准率、F1评分和准确率作为模型性能评价

指标，计算式为

R ecall =
TP

TP + FN
× 100%， （1）

P recision = TP

TP + FP
× 100%， （2）

F 1 = 2 × R ecall × P recision

R ecall + P recision
， （3）

A ccuracy = TP + TN

TP + TN + FP + FN
× 100%， （4）

式中：

Recall——召回率，%；

Precision——查准率，%；

F1——F1评分；

Accuracy——准确率，%；

TP——正样本被正确识别的数量；

TN——负样本被正确识别的数量；

FP——负样本被错误识别为正样本的数量（假阳性）；

FN——正样本被错误识别为负样本的数量（假阴性）。

1.4　数据处理

通过 ViewSpecPro 软件将光谱仪采集的 DN 值转换成

反射率值，将反射率数据导入到 Excel 中进行整理，并保

存为 CSV 格式的数据以待处理分析。光谱数据预处理、

特征波长提取、分类模型构建、超参数优化和结果图绘制

均基于 Pycharm（Python 3.9）软件编程实现。

2　结果与分析

2.1　原始光谱曲线分析

采集到的高光谱数据在首端和末端存在大量随机噪

声，因此选取中间部分 400~1 000 nm 的光谱数据进行后

续研究。从图 2 可以看出，无损伤、Ⅰ、Ⅱ和Ⅲ级损伤 4 条

图 1　不同碰伤等级人参果样品

Figure 1　Solanum muricatum fruit samples with different grades of damage
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光谱曲线总体趋势相同，呈先低后高的变化趋势，且波峰

波谷位于同一波长点，但在 600~900 nm 范围内，光谱反射

率有明显差异，随着损伤程度的增加，反射率下降。出现

这种情况的主要原因是人参果损伤后，果实内部细胞壁

和细胞膜遭到破坏，释放出更多水分［32］，使得损伤部位表

面含水量增多，反射率降低，因此利用该光谱数据进行人

参果损伤程度检测是可行的。

2.2　光谱预处理结果分析

在实际应用中，原始光谱数据可能存在噪声，因此利

用 MSC、SNV、SG 和 WT 4 种算法对原始光谱进行预处

理，然后按 4∶1 的比例将预处理后的数据随机划分为训练

集（720 条）和预测集（180 条），并结合 RF 算法分别建立人

参果损伤分类模型，其预测集分类结果如图 3 所示，光谱

数据未经过预处理（RAW）构建的分类模型训练集准确率

为 78.3%，预测集准确率为 75.56%。与未处理相比，经过

SNV、MSC 和 WT 处理后，模型分类准确率提高，其中训

练 集 准 确 率 分 别 为 89.57%，84.42%，82.06%，提 高 了

11.27%，6.12%，3.76%，经过 SNV 和 WT 处理后的预测集

准确率为 78.89%，77.10%，提高了 3.33%，1.54%。经过

SG 预处理后相较原始光谱准确率未提高甚至下降，预测

集分类准确率为 69.44%。相较其他预处理方法，SNV 能

更有效地消除这部分噪声，提高光谱数据的信噪比，因此

采用该方法对高光谱数据进行预处理。

2.3　特征波长提取结果分析

从高光谱全波段建立的人参果损伤检测模型的预测

集结果来看，该模型有一定分类能力，但因高光谱数据量

庞大，有较多特征冗余，模型准确率和效率还有进一步提

升的可能，因此采用 SPA 算法和 CARS 算法对 SNV 预处

理后光谱数据进行特征波长提取。

2.3.1　连续投影算法（SPA）　使用 SPA 对 SNV 预处理后

的光谱进行特征波长提取时，先计算 SPA 在不同数量特

征波长下的均方根误差（root mean square error，RMSE）

值，然后根据 RMSE 的值来选择特征波长。从图 4（a）可

以看出，特征波长数为 24 时，RMSE 的值接近最小值，特

征波长数>24 时，RMSE 的值未出现明显减小，因此选择

这 24 个特征波段。从图 4（b）可以看出，选出的特征波段

主要集中在 400~500 nm，后续波段提取到的较少，整体来

看，提取到的特征波长分布不均，代表性不强。

2.3.2　竞争性自适应重加权算法（CARS）　使用 CARS

算法对 SNV 预处理后的光谱进行特征波长提取时，设定

图 3　不同预处理方法处理后的损伤分类结果

Figure 3　Damage classification results after pretreatment 

with different methods

图 2　原始光谱的平均光谱反射曲线

Figure 2　Average reflectance curve of the 

original spectrum

图 4　SPA 算法提取结果图

Figure 4　Results of SPA extraction
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蒙特卡洛采样次数为 50，每次采样后构建偏最小二乘回

归（partial least squares regression，PLSR）模型，并采用五

折 交 叉 验 证 计 算 其 交 叉 验 证 均 方 根 误 差（root mean 

square error of cross validation，RMSECV）。最终，从所有

采样中选取 RMSECV 最小的一次所对应的波长子集作为

最优特征波长。从图 5（a）和图 5（b）可以看出，第 15次采样

过程中获得的特征波长建立的 PLSR 模型 RESECV 值最

小，该波长集包含 105个特征波长。由图 5（c）可以看出，选

出的特征波长主要集中在 500~1 000 nm，提取到的特征波

段分布均匀，特征波峰和波谷都包含在内，代表性较好。

SPA 算法通过正交投影方式选出最小共线性的特征

波段组合，只得到 24 个特征波段，占总波段的 3.99%，丢

失了一些关键的光谱信息。而 CARS 则是通过竞争机制

逐步筛选出了最重要的 105 个特征波段，占总波段的

17.47%，提取到的特征波长数较多，携带的光谱信息也更

多，因此，选择 CARS 作为最优特征提取方法。

2.4　模型的建立及性能比较

利用 CARS 提取的 105 个特征波段分别构建 PLS-

DA、SVM 和 RF 模型，模型预测结果如表 1 所示。通过对

比 3 种模型的分类性能指标，可以看出模型综合性能排序

是 ：SNV-CARS-RF>SNV-CARS-SVM>SNV-CARS-PLS-

DA，其中 SNV-CARS-RF 模型在召回率（92.78%）、查准率

（93.19%）、F1评分（92.68%）和准确率（92.78%）4 项指标上

均显著领先，表现出最优的分类性能，故选择其为最佳人

参果损伤分级模型。

为进一步验证 CARS 结合 RF 算法模型对 4 类不同损

伤程度人参果的分级效果，构建其预测集的混淆矩阵图，

如图 6 所示。CARS 特征波长提取算法结合 RF 算法能较

好地对人参果损伤类型进行判别，判别错误总样本数为

13 个，其中 5 个Ⅰ级损伤、4 个Ⅱ级损伤、4 个Ⅲ级损伤，未

损伤样本全部判别正确。该结果再次证明 CARS-RF 算

法能够实现不同人参果损伤类别的分类，模型总体分类

准确率较高，但仍存在一定程度的误判。当前模型尚未

达到最优参数配置，后续将进行超参数调优，进一步提升

模型对多类别损伤样本的区分能力。

2.5　参数寻优

基于 RF 建立分类模型时，需合理设置决策树棵数

（n_estimators）、决策树最大深度（max_depth）等超参数才

图 5　CARS 算法提取结果图

Figure 5　Results of CARS algorithm extraction

表 1　基于特征波段建立模型的预测结果

Table 1　Prediction results of the established model based 

on characteristic wavebands % 

模型

SNV-CARS-PLS-DA

SNV-CARS-SVM

SNV-CARS-RF

召回率

85.47

90.50

92.78

查准率

85.62

90.87

93.19

F1评分

85.15

90.34

92.68

准确率

85.47

90.50

92.78

图 6　SNV-CARS-RF 算法分类结果混淆矩阵

Figure 6　Confusion matrix of classification results of 

SNV-CARS-RF algorithm
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能得到理想的准确率。为得到最佳超参数组合采用 BO

算法对 RF 模型进行寻优，以 5 折交叉验证后模型的平均

准确率作为目标函数，通过 50 次迭代寻找 SNV-CARS-RF

模型的最佳超参数组合，超参数含义及最佳取值如表 2 所

示。使用寻找到的最佳超参构建 RF 模型，最终预测集分

类准确率提升至 100%，表明使用 BO 算法对 RF 模型参数

寻优，选出最佳参数建模能有效提升模型判别准确率。

3　结论

（1） 利用多元散射校正、标准正态变换、卷积平滑和

小波变换 4 种预处理方式对光谱原始数据进行降噪处理，

建立全波段模型，最后以标准正态变换为预处理方法的

模型准确率最高，预测准确率为 78.89%。

（2） 采用连续投影算法和竞争性自适应重加权算法

对采用标准正态变换处理后的光谱数据进行特征波段提

取，通过偏最小二乘法判别分析、支持向量机和随机森林

算法建模后的分类指标分析，发现标准正态变换—竞争

性自适应重加权—随机森林组合构建的模型准确率最

高，预测准确率为 92.78%。

（3） 使用贝叶斯算法优化随机森林模型中决策树棵

数、最大深度、内部节点再划分所需的最小样本数等超参

数，使得最终识别率达到 100%，实现对碰撞损伤人参果

的快速准确鉴别。

（4）使用标准正态变换进行数据预处理，结合竞争性

自适应重加权特征波长提取算法与随机森林算法实现基

于高光谱数据的人参果损伤检测确实可行，可为其他水

果损伤程度准确无损检测提供一定参考，同时为研发人

参果自动分级流水线设备提供支撑，助力食品机械在果

品检测与分选过程中的智能化应用。
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