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Cherry grading screening based on deep learning-driven heatmap regression

SONG Xuejun GAO Lei GUO Xiaoxia

(Shanxi Institute of Technology, Yangquan, Shanxi 045000, China)

Abstract: [ Objective] To solve the problems of low efficiency and high cost in cherry screening. [ Methods] A heatmap regression method
HRNet-YT was proposed to automatically identify cherry size and the presence of fruit stems, thereby realizing efficient screening. HRNet-
YT utilized multiple parallel subnetworks to achieve multi-scale information fusion while maintaining high-resolution representations,
ensuring the spatial accuracy of heatmaps for stem and calyx keypoints. By leveraging heatmap techniques to capture rich contextual
information and optimizing the loss function, the model's robustness and precision were enhanced. [ Results] HRNet-YT-W48 (384 <288)
achieves a detection precision of 87.3% and an keypoint average precision (AP, OKS=0.5) of 0.22 on the dataset. [ Conclusion] The
proposed method demonstrates high precision and adaptability in the cherry keypoint detection task.

Keywords: deep learning; heatmap regression; cherry; grading screening; keypoint detection; multi-scale feature fusion
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Figure 1 Overall architecture of HRNet-YT
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Figure 2 Label processing results
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Table 1 Impact of different backbone networks and input resolutions on model performance
LRIl sR7S LR [RS8 BRI IM FLOPs/G PCK/% AP(OKS=0.5)
I A HRNet-YT w32 256X 192 28.50 7.12 72.7 0.21
w32 384288 28.50 16.02 75.8 0.23
w48 256X192 63.60 14.61 82.3 0.07
w48 384288 63.60 32.88 87.3 0.22
AR 119 HRNet-YT w48_384 <288 15.92 8.22 78.5 0.05
oy E A ResNet res50_256< 192 34.00 8.98 74.3 0.33
res50 384288 34.00 20.21 83.5 0.24
resl01_256X192 52.99 12.37 58.5 0.06
res101 384288 52.99 27.83 84.3 0.26
res152 256%192 68.63 15.76 88.2 0.13
res152 384288 68.63 35.44 80.7 0.27
AR I 9 ResNet res101_384 <288 16.44 8.78 81.5 0.22
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Figure 3 Comparison results of heatmap regression and coordinate regression methods
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Figure 4 Detection results of model under different resolutions and architectures
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Table 2 Impact of different loss functions on model
performance
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Figure 5 Comparison of model performance of different loss functions
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