DOI:10.13652/j.spjx.1003.5788.2023.80346

超高效液相色谱一串联质谱法测定生牛乳中 10种新烟碱类农药残留

高猛峰1.2 童金蓉1.2 梅 博1.2 王 霞1.2 张维谊1.2

(1.上海市农产品质量安全中心,上海 201708; 2.农业农村部食品质量监督检验测试中心(上海),上海 201708)

摘要:[目的]建立分散固相萃取结合超高效液相—串联质谱(UPLC-MS)同时检测生牛乳中10种新烟碱类农药残留的 分析方法。[方法]生牛乳样品用乙腈提取,提取液加入QuECHERS盐包盐析,采用分散固相萃取剂净化,净化液以超高 效液相色谱—串联质谱测定,通过外标法定量。[结果]10种化合物在一定浓度范围内呈现良好的线性关系(R²> 0.999),方法检出限为0.2~0.5 µg/kg,定量限为1µg/kg,生牛乳中1.0,2.5,5.0 µg/kg3个添加水平的平均加标回收率在 75.9%~108.9%,日内精密度为1.8%~7.6%,日间精密度低于11.7%。[结论]该方法前处理简便、重现性好、灵敏度高,适 用于生牛乳中新烟碱类农药的残留检测。

关键词:新烟碱类农药;牛乳;超高效液相--串联质谱;分散固相萃取;哌虫啶

Simultaneous determination of 10 neonicotinoid pesticides in raw milk by ultra-high performance liquid chromatography tandem mass spectrometry

GAO Mengfeng^{1,2} TONG Jinrong^{1,2} MEI Bo^{1,2} WANG Xia^{1,2} ZHANG Weiyi^{1,2}

(1. Shanghai Center of Agri-product Quality and Safety, Shanghai 201708, China; 2. Food Quality Supervision and Inspection Center of Ministry of Agriculture and Rural Affairs (Shanghai), Shanghai 201708, China)

Abstract: [Objective] To establish an analysis method for the simultaneous determination of 10 neonicotinoid pesticide residues in raw milk by dispersive solid-phase extraction combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS). [Methods] The samples are extracted with acetonitrile, salted out with a QuECHER salt pocket, and purified by the dispersive solid-phase extraction (d-SPE) method. The analytes are detected by UPLC-MS/MS and quantified by the external standard method. [Results] 10 targeted compounds show a good linear relationship in a certain concentration range with the coefficient of determination (R^2) over 0.999. The limits of detection (LODs) are 0.2~0.5 µg/kg, while the limits of quantification (LOQs) are 1.0 µg/kg. At the supplemental levels of 1.0, 2.5, and 5.0 µg/kg, the average recovery rates of standard addition of analytes in raw milk are between 75.9%~108.9%, with the intra-day precision (RSD_r) of 1.8%~7.6% and the inter-day precision (RSD_R) less than 11.7%. [Conclusion] The established method is simple for pretreatment and has good repeatability and high sensitivity. It is suitable for the detection of neonicotinoid pesticide residues in raw milk. Keywords: neonicotinoid pesticides; raw milk; ultra-high performance liquid chromatography-tandem mass spectrometry; dispersive solid-phase extraction; IPP

新烟碱类农药是一类与尼古丁化学性质类似的新型 杀虫剂,因具有高效、广谱和低毒等特点,逐渐替代了传 统有机磷和氨基甲酸酯等高毒农药,被广泛应用于农业 生产、城市绿化等领域^[1-2]。目前,已经实现商业化生产 和规模化应用的新烟碱类杀虫剂主要包括:吡虫啉、噻虫 嗪、环氧虫啶、哌虫啶、啶虫脒、呋虫胺等10余种^[3]。近些 年,一系列研究^[4-8]发现,新烟碱类农药会阻断昆虫的神 经系统传导,对于蜜蜂等授粉昆虫具有高毒性危害。因此,欧盟委员会禁止在授粉昆虫喜爱的开花作物上使用3 种新烟碱类农药,如玉米、油菜等^[9]。同时还有文献^[10-14] 报道,新烟碱类杀虫剂在多种环境介质中被检出,如土 壤、地表水、地下水等均受到了不同程度的污染,其带来

基金项目:上海市奶业优势特色产业集群科研类项目

通信作者:张维谊(1977—),女,上海市农产品质量安全中心推广研究员,硕士。E-mail:zhangharewei@163.com 收稿日期:2023-04-18 改回日期:2024-11-25

的生态环境危害引起了全球范围内的广泛关注。

乳制品产业链长,加之大多数农药具有高亲脂性,更容易在牛乳中这类高脂肪产品中蓄积^[15],如奶牛进食了 有农药残留的饲料原料。另外,在奶牛养殖过程中使用 杀虫剂控制奶牛身上的蝇虫时混入牛乳中,当挤奶设备、 用具以及其他直接接触的物品时也可导致残留^[16]。市售 牛奶中也曾检出新烟碱类杀虫剂,赵妍等^[17]从市售牛奶 样品中检出了噻虫嗪、吡虫啉和啶虫脒,其中啶虫脒的检 出率最高,检出的平均值达到 395.4 ng/L;宁霄等^[18]从市 售牛乳样品中检出了吡虫啉和啶虫脒。尽管检出参数均 未超限量值,但这种由环境带入或食物链蓄积所带来的 新烟碱类农药残留应当引起适当关注。

GB 2763—2021 对 6 种新烟碱类杀虫剂在生乳中的 残留限量值作了规定,其中啶虫脒的限量值最低,为 0.02 mg/kg,而且只有噻虫嗪、噻虫胺和啶虫脒3 个参数有 相应推荐的检测方法,涉及 GB 23200.39 和 GB/T 20772 等 两项国家标准,其他几种新烟碱类杀虫剂均无指定检测方 法。GB 23200.121—2021 检测参数中囊括了几种新烟碱 类农药且仅适用于植物源性食品,文献[17-18]也只报道 了乳制品中噻虫嗪、吡虫啉和啶虫脒等几种应用较多的新 烟碱类农药的检测分析方法。环氧虫啶和哌虫啶是由华 东理工大学自主研发的2种新烟碱类杀虫剂,可用于粮食 中飞虱等多种害虫的防治,目前国内外关于哌虫啶的定量 分析报道主要为高效液相色谱法测定^[19-21]。

研究拟采用分散固相萃取技术结合超高效液相色 谱一串联质谱(UPLC-MS)建立一种同时检测生牛乳中 10种新烟碱类农药的分析方法,以期弥补环氧虫啶和哌 虫啶的液相色谱一串联质谱分析方法的缺失,为推进乳 制品中农药残留检测标准制修订和生牛乳中新烟碱类农 药残留风险排查提供技术参考。

1 材料与方法

1.1 材料、试剂与仪器

超高效液相色谱一质谱联用仪:Xevo TQ-S型,沃特世(Waters)中国有限公司;

超纯水仪:Milli-Q型,美国密理博公司;

高速离心机:Thermo Heraeus X1R型,美国赛默飞世尔(Thermo Fisher)科技有限公司;

涡旋混合器:XW-80A型,上海米青科实业有限公司;

呋虫胺(DIN)、烯啶虫胺(NIT)、哌虫啶(IPP)、噻虫嗪
(THI)、噻虫胺(CLO)、吡虫啉(IMI)、环氧虫啶(CYO)、氯
噻啉(IMID)、啶虫脒(ACE)、噻虫啉(THID):纯度>
98.0%,德国 Dr. Ehrenstorfer公司;

乙腈、甲酸、甲醇:色谱纯,国药集团化学试剂有限 公司;

N-丙基乙二胺(PSA,粒径40~60 μm)和十八烷基硅 烷键合硅胶吸附剂(C₁₈,粒径40~60 μm):天津博纳艾杰 尔公司; QuECHERS EN Method 盐包:北京迪科马科技有限 公司;

试验用水:由美国 Milipore 纯水仪制备; 牛乳样品:上海地区的牧场和奶牛基地。

1.2 方法

1.2.1 标准溶液配制 分别准确称取 5~10 mg(精确至 0.1 mg)各新烟碱类农药标准物质于 10 mL容量瓶中,用 乙腈溶解并定容至刻度,配制得到质量浓度为 100 mg/L 的新烟碱类农药标准储备液。分别吸取适量各新烟碱类 农药标准储备液于 100 mL容量瓶中,用乙腈定容至刻度, 配制得到质量浓度为 1 mg/L 的 10 种新烟碱类农药混合 标准中间液。新烟碱类农药标准储备液和混合标准中间 液避光保存于-18℃冰箱,可使用一年。用按 1.2.2 样品 前处理得到的空白生牛乳基质溶液,将混合标准中间液 逐步稀释,得到质量浓度为 0.2,0.5,1.0,2.0,5.0,10.0 μg/L 的生牛乳基质混合标准工作溶液,绘制标准工作曲线,生 牛乳基质混合标准工作溶液,绘制标准工作曲线,生

1.2.2 样品前处理 准确称取 10 g生牛乳样品(精确至 0.01 g)于 50 mL 塑料离心管中,先后加入 10 mL乙腈、QuECHERS 盐包,振荡混匀 2 min 后,在4℃下以 8 000 r/min离心 5 min。准确移取 2 mL 上层提取液于 15 mL离心管中,加入 100 mg PSA 和 25 mg C₁₈粉末,涡旋 混匀 1 min,4℃、4 200 r/min离心 5 min,取上清液经 0.22 μ m尼龙滤膜过滤至进样小瓶,待测。

1.2.3 仪器工作条件

(1)液相色谱条件:采用HSST3色谱柱(2.1 mm×
100 mm,1.8 µm);柱温35℃;进样体积1µL;流动相A为水,流动相B为乙腈;梯度洗脱流速0.4 mL/min;梯度洗脱 程序:0~0.5 min,95%A;0.5~3.5 min,95%~5%A;3.5~
4.0 min,5%A;4.0~4.5 min,5%~95%A;4.5~6.0 min,95%A。

(2)质谱条件:采用电喷雾离子源(ESI);扫描方式为 正离子扫描;检测方式为多反应监测(MRM);离子源温 度150℃;锥孔电压30V;毛细管电压3kV;脱溶剂气流量 700L/h;去溶剂气温度500℃;锥孔气流量150L/h;驻留 时间0.018s;离子对和碰撞能等质谱参数见表1。

2 结果与分析

2.1 质谱条件优化

以质量浓度为500 μg/L的10种新烟碱类农药的单一标准溶液分别在正离子(ESI⁺)和负离子(ESI⁻)进行全扫描,以获得最佳的质谱参数。结果表明,10种目标化合物在正离子模式下响应较好,相对于负离子模式强度更高,因此选择单一正离子扫描方式。针对每种化合物,选择两对响应值较高的特征离子作为定量离子对和定性离子对,同时优化了锥孔电压和碰撞能等关键参数,优化后的质谱参数见表1。

<u>秋 I IVIII M M M 大 L L M H M H M H M M M M M M M M M M M M</u>	表 1	10种新烟碱类化合物的质	贡 谱参	数
--	-----	--------------	-------------	---

 Table 1
 Mass spectrometric parameters of 10 neonicotinoid pesticides

		,	, miera pesnera	•••	
化合物	保留时	母离子	子离子	锥孔电	碰撞
化百10	间/min	(m/z)	(m/z)	压/V	能/V
DIN	2.69	203.1	129.0*,157.0	30	12,10
NIT	2.82	271.1	$224.0, 237.0^{*}$	30	20,15
THI	3.01	292.0	180.9,211.1*	30	20,10
CYO	3.06	323.2	182.0,276.0*	30	15,15
CLO	3.17	250.1	131.8,169.0*	30	17,13
IMI	3.24	256.1	175.1,209.1*	30	25,18
IMID	3.30	262.0	122.1,181.0*	30	27,15
ACE	3.30	223.1	89.9,125.9*	30	30,20
THID	3.48	253.1	125.9*,185.9	30	22,13
IPP1和2	3.44/3.71	367.2	263.1*,321.2/	30	15,10/
			137.1*,306.1		30,25

† *为定量离子对。

2.2 色谱条件优化

2.2.1 色谱柱的选择 以水一乙腈为流动相体系,考察了 HSS T3 柱和 C₁₈柱对 10 种新烟碱农药的分离效果。结果 发现,DIN、ACE等9种农药在两根色谱柱上的分离效果基 本一致,而 IPP 在 C₁₈柱上峰形较差且分离不好。在 C₁₈柱 上,IPP1峰形存在拖尾,IPP2峰形不对称且受干扰严重, 而在HSS T3柱上,IPP峰形尖锐且无拖尾,具体如图1所 示。从整体结果来看,HSS T3柱对各目标化合物的分离 效果和响应均优于C₁₈柱,因此选择HSS T3柱开展后续 试验。

2.2.2 流动相的优化 在优化后的质谱条件下,对方法 流动相体系进行优化。比较了甲醇一水、乙腈一水、纯乙 腈、乙腈和0.1%甲酸一水4种流动相体系对10种新烟碱 农药的分离效果。结果表明,当甲醇用作流动相B时,出 现较多杂峰;当纯水中加入0.1%甲酸时,IPP与THID出 现峰叠加;仅使用纯乙腈作为流动相时,10种农药的分离 度不如乙腈一水;当使用乙腈一水为流动相时,其对目标 物质的分离度和响应最佳。因此,选择乙腈一水为最佳 流动相开展后续试验。在优化后的色谱条件下,质量浓 度为10 μg/L的基质配制标准溶液中10种新烟碱农药的 总离子色谱图如图2所示。

2.3 前处理方法优化

乙腈在农药提取效率方面具备一定优势,且能够较 好地去除畜禽肉、蛋等复杂基质中的脂肪、蛋白质及糖分 等干扰性物质^[18],因此试验中优选乙腈作为提取溶剂。 赵妍等^[17]通过乙腈一水的冷冻诱导液液萃取富集分析 物,同时采用低温诱导脂质沉降获得了较好的除脂效果。

Figure 1 Extracted ion chromatograms of IPP at different columns

考虑到除脂对新烟碱类农药的回收率是否会产生影响, 研究不但考察了提取试剂酸碱度对于新烟碱农药的提取 效率的影响,还考察了提取剂温度的影响,重点比较了常 温乙腈、0.1%甲酸一乙腈,1%甲酸一乙腈和低温乙腈 -18℃沉降2h4种提取方式的回收率。结果发现,经低 温乙腈沉降可观察到有沉降脂质,但低温乙腈-18℃沉 降与常温乙腈提取回收率并无显著差异,如图3(a)所示, 脂质沉降并未在目标物回收率上体现出较大差异,其原 因可能是10种新烟碱类农药的水溶性和亲脂性各有差

异,加之乙腈相和水相比例固定,因此总体回收率并未体 现出显著性差异。使用酸化乙腈并未提高目标化合物的 提取回收率,当使用1%甲酸一乙腈时,DIN的回收率> 120%,使用纯乙腈时,10种化合物的提取回收率为 92.8%~106.8%,基本达到农药残留分析要求,如图3(b)所 示。结合目标物的回收率及前处理时长等因素,选择纯 乙腈作为提取溶剂。

牛乳经提取后存在脂质、糖类、酚类等杂质,考虑采用 DSPE 净化管对提取液进行净化。PSA 含有叔氨基团等极性基团,具有弱阴离子交换能力,可有效吸附有机酸和金属离子等干扰物,而 C₁₈能够较好地吸附脂肪等杂质^[17]。选择 PSA和 C₁₈两种吸附剂进行吸附试验,同时考察了不同吸附剂用量配比(25~200 mg)对目标化合物回收率的影响,结果表明,当 C₁₈ 用量为 25 mg, PSA 为 100 mg时,10种新烟碱类农药均有较好的回收率,而后续探究吸附剂用量与提取回收率的关系时发现,增加吸附剂用量,净化效果不但未改善,反而部分化合物回收率略有降低,因此采用内含 100 mg PSA 和 25 mg C₁₈ 的 DSPE 净化管进行净化。

Figure 3 Effect of different extraction methods for 10 compounds (n=3)

2.4 方法学验证

2.4.1 基质效应 为了评价方法的基质效应,分别配制了 质量浓度为0.2,0.5,1.0,2.0,5.0,10.0 μg/L的基质配制标准 溶液和纯溶剂标准溶液,通过计算两者标准曲线的斜率比 值与1的差值,进而确定基质效应。基质效应参考文献 [22]进行计算。试验结果表明:NIT和IPP表现出基质增 强效应,其他化合物均为基质抑制效应,THI、CYO、DIN、 THIA表现出可忽略的弱基质效应,其余均为中等基质效 应。研究后续定量分析均采用基质配标的线性方程计算。 2.4.2 线性范围、检出限和定量限 以各化合物定量离子 对的峰面积(y)对应质量浓度(x)绘制标准曲线,相关系数 和回归方程如表2所示。由表2可知,相关系数(R²)为 0.999 0~0.999 9,均大于 0.999,方法在 0.2~10 μg/kg 的质量 浓度范围内呈现良好的线性关系。以加标基质的3倍信噪 比峰高(S/N=3)对应方法检出限(LOD),10倍信噪比 (S/N=10)对应方法定量限(LOQ),计算方法参照 GB/T 27417—2017《合格评定 化学分析方法确认和验证指南》 执行,另外结合了10种新烟碱类农药的限量值要求和实际 检测需求来定值,得出该方法牛乳中10种新烟碱类农药的 检出限为0.2或0.5 μg/kg,定量限为1 μg/kg。

2.4.3 回收率和精密度 以空白牛乳基质制备加标样品,设计3个添加水平(1.0,2.5,5.0 μg/kg),每个水平6个 平行样,来评估方法的准确度和精密度。空白样品和加 标样品的前处理步骤按1.2.2执行。分析日内6个平行样 用以计算日内精密度,随后连续3d内单一加标样品的响 应峰面积用以计算日间精密度。方法的回收率和精密度 结果见表3。10种新烟碱类农药在1.0,2.5,5.0 μg/kg加标 水平下的平均回收率为75.9%~108.9%,日内精密度为 1.8%~7.6%,日间精密度低于11.7%,结果表明,研究所建 立的方法具有较高精密度和准确度,可满足新烟碱类农 药的检验检测需求。

		-		-		
化合物	线性方程	线性范围/($\mu g \cdot L^{-1}$)	R^2	检出限/($\mu g \cdot k g^{-1}$)	定量限/($\mu g \cdot kg^{-1}$)	基质效应/%
DIN	$y=3\ 836.35x+441.386$	0.5~10	0.999 9	0.5	1	-8.3
NIT	$y = 18\ 677.2x + 42.438\ 4$	0.5~10	0.999 2	0.5	1	32.4
THI	$y = 35\ 299.5x - 2\ 828.99$	0.2~10	0.999 4	0.2	1	-3.7
CYO	$y = 12\ 467.1x + 637.527$	0.5~10	0.999 3	0.5	1	-15.2
CLO	$y = 16\ 521.3x + 549.5$	0.5~10	0.999 9	0.5	1	-20.6
IMI	$y = 17\ 128.7x + 250.63$	0.2~10	0.999 7	0.2	1	-20.7
IMID	y = 19645x + 1441.73	0.2~10	0.999 2	0.2	1	-21.8
ACE	$y = 53\ 899.6x + 2\ 886.08$	0.2~10	0.999 7	0.2	1	-22.3
THID	$y = 115\ 353x + 1\ 919.69$	0.2~10	0.999 1	0.2	1	-13.5
IPP1和2	$y = 12\ 080.7x - 532.184$	0.5~10	0.999 0	0.5	1	32.2

表 2 10种新烟碱类农药在牛乳基质中的方法学验证结果[†] Table 2 Methodological validation results of 10 neonicotinoid pesticides in raw milk

† IPP定量结果根据2个峰面积之和计算标准曲线斜率及截距,再计算样品中的浓度。

表3 3种	添加水平下	「目标化」	合物的回收	【率和精密度
-------	-------	-------	-------	--------

(1. A ibm	加标水平/ 回收率/		精密度/%		(1. A #/m	加标水平/	回收率/	精密度/%	
化合物	$(\mu g \bullet k g^{-1})$	%	日内(n=6)	日间(n=3)	化合物	$(\mu g \bullet k g^{-1})$	%	日内(n=6)	日间(n=3)
DIN	1.0	96.1	7.1	10.5	IMI	1.0	96.3	3.1	10.8
	2.5	84.1	8.2	10.3		2.5	91.5	2.5	11.7
	5.0	97.1	7.6	11.2		5.0	96.1	2.8	7.0
NIT	1.0	102.2	1.8	2.7	IMID	1.0	93.6	4.7	7.2
	2.5	106.0	6.1	4.0		2.5	91.3	7.6	8.4
	5.0	108.9	2.8	1.9		5.0	90.3	4.2	6.7
THI	1.0	93.8	4.0	7.1	ACE	1.0	92.0	3.7	11.3
	2.5	81.5	7.5	11.7		2.5	88.1	4.4	8.6
	5.0	75.9	2.7	6.7		5.0	93.8	6.3	9.4
CYO	1.0	82.5	5.5	3.8	THID	1.0	97.9	2.5	8.7
	2.5	79.5	3.1	7.5		2.5	93.3	6.4	10.5
	5.0	83.7	3.3	6.4		5.0	93.9	3.7	6.8
CLO	1.0	92.1	5.7	9.0	IPP1和2	1.0	106.5	5.4	10.4
	2.5	88.6	3.7	10.0		2.5	104.7	3.6	7.9
	5.0	94.7	2.3	4.6		5.0	99.1	2.5	10.2

Table 3	Recoveries and	precisions	of targeted	analytes in	raw milk	at 3 spiked	levels
---------	----------------	------------	-------------	-------------	----------	-------------	--------

2.5 实际样品测定

采用建立的方法对 30 批次生牛乳样品进行 10 种新烟碱类农药检测,结果显示在2 批次样品中分别检出 ACE 和 THI,其他 8 种新烟碱类农药中均未检出。ACE 含量为 1.14 µg/kg,THI 含量为 1.26 µg/kg,均低于 GB 2763—2021 标准中所规定生乳中的最大残留限量值,这与文献[17-18]的报道基本一致。

3 结论

利用超高效液相色谱一串联质谱和分散固相萃取技术,建立了一种同时检测生牛乳中10种新烟碱农药的分析方法,并对前处理及色谱条件进行了优化。结果表明,样品用乙腈按 m_{+乳}: V_{乙腈}=1:1(g/mL)提取,乙腈一水为最佳流动相,10种化合物在6min内全部出峰,哌虫啶1和2可实现完全分离,响应值高且峰形较好,10种化合物

在 0.2~10 μg/L 的质量浓度范围内线性相关系数均大于 0.999,平均加标回收率为 75.9%~108.9%。在对实际样品 进行检测分析时,有痕量啶虫脒和噻虫嗪检出。该方法 前处理快速简便、极大地节约了时间和成本,可满足生牛 乳中多种新烟碱类农药的快速检测分析。

参考文献

- CHEN H Y, HU O, FAN Y, et al. Fluorescence paper-based sensor for visual detection of carbamate pesticides in food based on CdTe quantum dot and nano ZnTPyP[J]. Food Chemistry, 2020, 327: 127075.
- [2] DENG F C, SUN J T, DOU R N, et al. Contamination of pyrethroids in agricultural soils from the Yangtze river delta, China[J]. Science of the Total Environment, 2020, 731: 139181.
- [3] 陈靖琳, 张妍, 张玉环, 等. 新烟碱类农药的快速检测技术研

究进展[J]. 食品安全质量检测学报, 2021, 12(15): 5 899-5 905. CHEN J L, ZHANG Y, ZHANG Y H, et al. Research on rapid detection technology of neonicotinoids pesticides[J]. Journal of Food Safety and Quality, 2021, 12(15): 5 899-5 905.

- [4] WOODCOCK B A, ISAAC N J B, BULLOCK J M, et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England[J]. Nature Communications, 2016, 7: 12459.
- [5] BARON G L, JANSEN V A A, BROWN M J F, et al. Pesticide reduces bumblebee colony initiation and increases probability of population extinction[J]. Nature Ecology & Evolution, 2017, 1(9): 1 308-1 316.
- [6] LONGING S D, PETERSON E M, JEWETT C T, et al. Exposure of foraging bees (Hymenoptera) to neonicotinoids in the U.S. southern high plains[J]. Environmental Entomology, 2020(2): 2.
- [7] BISHOP C A, WOUNDNEH M B, MAISONNEUVE F, et al. Determination of neonicotinoids and butenolide residues in avian and insect pollinators and their ambient environment in Western Canada (2017, 2018) [J]. Science of the Total Environment, 2020, 737: 139386.
- [8] IHARA M, MATSUDA K. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators[J]. Current Opinion in Insect Science, 2018, 30: 86-92.
- [9] BUTLER D. Scientists hail European ban on bee-harming pesticides[J/OL]. Nature. (2018-04-27) [2023-10-24]. https:// www.nature.com/articles/d41586-018-04987-4.
- [10] 李田田,郑珊珊,王晶,等.新烟碱类农药的污染现状及转化 行为研究进展[J]. 生态毒理学报, 2018, 13(4): 9-21.
 LI T T, ZHENG S S, WANG J, et al. A review on occurence and transformation behaviors of neonicotinoid pesticides[J].

Asian Journal of Ecotoxicology, 2018, 13(4): 9-21.

- [11] 吴程琛.新型新烟碱类农药对环境模式生物毒性效应的研究[D]. 杭州:浙江大学, 2016: 6-8.
 WU C C. The behaviors and toxic effects of neonicotinoid pesticides in model organisms[D]. Hangzhou: Zhejiang University, 2016: 6-8.
- [12] WHITEHORN P R, O'CONNOR S, WACKERS F L, et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production[J]. Science, 2012, 336(6 079): 351-352.
- [13] 李敏, 赵会君, 屈欢, 等. 新烟碱类杀虫剂潜在环境风险及光降解行为研究进展[J]. 农药, 2019, 58(3): 170-173.
 LI M, ZHAO H J, QU H, et al. Research progress on potential environmental risks and photodegradation of neonicotinoids insecticides[J]. Agrochemicals, 2019, 58(3): 170-173.
- [14] 崔嵩, 李斐, 刘志琨. 新烟碱类杀虫剂污染特征及其毒性效应[J]. 中国环境科学, 2023, 43(1): 361-373.
 CUI S, LI F, LIU Z K. Pollution characteristics and toxic effects of neonicotinoid insecticides[J]. China Environmental Science, 2023, 43(1): 361-373.
- [15] 段锦森,高庆超,李亚辉,等.我国与国际食品法典委员会和 欧盟婴幼儿食品安全标准中风险因子限量差异分析与思考 [J].食品科学,2022,43(9):300-309.

DUAN J M, GAO Q C, LI Y H, et al. Analysis and thinking of

the differences in risk factor limits among Chinese, Codex Alimentarius Commission (CAC) and European Union (EU) infant food safety standards[J]. Food Science, 2022, 43(9): 300-309.

[16] 王敬,张海超,陈敏娜,等.QuEChERS/气相色谱一串联质谱 法测定乳制品中232种农药残留[J].分析测试学报,2021,40
(9):1293-1302.
WANG J, ZHANG H C, CHEN M N, et al. Determination of

232 pesticide residues in dairy products by gas chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(9): 1 293-1 302.

[17] 赵妍,杨军,辛少鲲,等.超高效液相色谱一高分辨质谱法测定牛奶中新烟碱类农药残留[J].中国食品卫生杂志,2020,32 (2):139-145.

ZHAO Y, YANG J, XIN S K, et al. Determination of neonicotinoid residues in milk by ultra-high performance liquid chromatography-high resolution mass spectrometry[J]. Chinese Journal of Food Hygiene, 2020, 32(2): 139-145.

- [18] 宁霄, 张景然, 金绍明, 等. 超高效液相色谱—四极杆串联飞行时间质谱分析牛乳及婴幼儿配方乳粉中 500种农药残留
 [J]. 食品科学, 2023, 44(18): 339-346.
 NING X, ZHANG J R, JIN S M, et al. Analysis of 500 pesticide residues in milk and infant and young children formula milk powder by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry
 [J]. Food Science, 2023, 44(18): 339-346.
- [19] 丛路静,刘纪松,王美云,等.高效液相色谱法检测哌虫啶在稻田水、土壤、稻米和小麦粉中的残留[J].食品安全质量检测学报,2014,5(3):912-916.

CONG L J, LIU J S, WANG M Y, et al. Determination of paichongding in paddyfield water, soil, rice and wheat by high performance liquid chromatography[J]. Journal of Food Safety & Quality, 2014, 5(3): 912-916.

- [20] 谢慧,朱鲁生,谭梅英,等.固相萃取—高效液相色谱法检测土壤 中新型烟碱类杀虫剂哌虫啶[J].环境化学,2015,34(3):589-590. XIE H, ZHU L S, TAN M Y, et al. Detection of a new neonicotinoid insecticide in soil by solid-phase extraction-highperformance liquid chromatography[J]. Environmental Chemistry, 2015, 34(3): 589-590.
- [21] 刘钰, 崔蕊蕊, 庄占兴, 等. 杀虫剂哌虫啶的高效液相色谱分析[J]. 山东化工, 2014, 43(11): 110-112, 122.
 LIU Y, CUI R R, ZHUANG Z X, et al. Determination of pestiside paichongding (IPP) by high performance liquid chromatograph[J]. Shandong Chemical Industry, 2014, 43(11): 110-112, 122.
- [22] 孙程鹏,许炳雯,高娜,等. Sin-QuEChERS结合超高效液相 色谱串联质谱法同时检测果蔬中5种双酰胺类杀虫剂[J].食品安全质量检测学报,2020,11(6):1784-1791.

SUN C P, XU B W, GAO N, et al. Simultaneous determination of 5 kinds of diamide insecticides in fruits and vegetables by Sin-QuEChERS with ultraperformance liquid chromatography tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2020, 11(6): 1 784-1 791.