基于 Bi-Co-BTC 电化学传感器检测食品中 Zn²⁺ Cd²⁺ Pb²⁺ 含量 Determination of Zn²⁺ Cd²⁺ Pb²⁺ in food base on Bi-Co-BTC electrochemical sensor

丁可武^{1,2} 代莉莉³ 黄迪惠^{1,2} 孙仲伟^{1,2} 叶瑞洪^{1,2}

DING Kewu^{1,2}DAI Lili³HUANG Dihui^{1,2}SUN Zhongwei^{1,2}YE Ruihong^{1,2}(1. 福建技术师范学院福建省—印尼海洋食品联合研发中心,福建 福州 350300;2. 近海流域环境测控

治理福建省高校重点实验室,福建 福州 350300; 3. 武汉大学科研公共服务条件平台,湖北 武汉 430072)

(1. Fujian Polytechnic Normal University, Fujian Province-Indonesia Marine Food Joint Research and Development Center, Fuzhou, Fujian 350300, China; 2. Fujian Provincial Key Lab of Coastal Basin Environment, Fuzhou, Fujian 350300, China; 3. Wuhan University, Core Facility, Wuhan, Hubei 430072, China)

摘要:目的:制备新型电化学传感器检测食品中的重金属 含量。方法:通过水热法,以1,3,5-苯三甲酸(H₃BTC)为 配体,辅以五水合硝酸铋[Bi(NO₃)₃·5H₂O]和六水合硝 酸钴[Co(NO₃)₂·6H₂O]金属盐,制备新型铋基金属有 机骨架;通过超声自组装方式,制备多壁碳纳米管负载的 铋基金属有机骨架复合材料(Bi-Co-BTC/MWCNTs);通 过滴铸成膜方法,将复合材料修饰至玻碳电极(GCE)表 面。结果:采用 Bi-Co-BTC/MWCNTs/GCE 作为工作电 极实现了对样品中的 Zn²⁺、Cd²⁺、Pb²⁺同时检测,其检出 限分别为 0.040 3,0.005 69,0.023 9 ng/mL。三者在茶叶 中的加标回收率分别为 97.21%~105.44%,92.22%~ 106.10%,93.97%~ 98.02%。结论: Bi-Co-BTC/ MWCNTs/GCE 可用于食品中的重金属含量检测。

关键词:铋金属有机骨架;多壁碳纳米管;电化学传感器; 重金属;茶叶

Abstract: Objective: This study focused on the preparation of a new electrochemical sensor for detection of heavy metal content in food. **Methods:** In this study, a new type of bismuth-based metal-organic framework was prepared by hydrothermal method. 1, 3, 5-benzenetricarboxylic acid (H₃ BTC) was used as a ligand, which

基金项目:福建省科技厅自然科学基金(编号:2020J01310, 2022J01977);福建省高校重点实验室开放课题(编号: S1-KF2014)

收稿日期:2022-08-03 改回日期:2023-06-13

supplemented by bismuth nitrate pentahydrate $[Bi(NO_3)_3 5H_2 O]$ and cobalt nitrate hexahydrate $[Co(NO_3)_2 \cdot 6H_2 O]$ metal salts to prepare novel bismuth-based metal-organic frameworks. Bibased metal-organic framework composites supported by multiwalled carbon nanotubes were prepared by ultrasonic selfassembly. The surface of glassy carbon electrode (GCE) was modified by dropping casting. **Results**: The Bi-Co-BTC/ MWCNTs/GCE was used as the working electrode to realize the simultaneous detection of Zn^{2+} , Cd^{2+} , and Pb^{2+} in the sample, and the detection limits were 0.040 3, 0.005 69, 0.023 9 ng/mL respectively. The recovery of Zn^{2+} , Cd^{2+} and Pb^{2+} in the tea were 97.21% ~ 105.44%, 92.22% ~ 106.10% and 93.97% ~ 98.02%, respectively. **Conclusion**: The results show that Bi-MOF/MWCNTs/GCE can be used to detect the content of heavy metals in food.

Keywords: bismuth metal-organic framework; multi-walled carbon nanotubes; electrochemical sensor; heavy metal; tea

重金属为密度大于 5 g/cm³ 的金属,包括金、银、铜、 铁、汞、铅和镉^[1]。重金属离子在环境中难以降解,可通过 食物链进入人体,即使少量也会对人体健康造成不可逆转 的危害^[2-3]。目前,常用的重金属含量测定方法主要有原 子吸收分光光度法^[4]、电感耦合等离子体质谱法^[5]和质谱 法^[6]。这些方法具有高选择性和灵敏度等优点,但其价格 昂贵,现场检测繁琐。电化学方法(特别是阳极溶出伏安法) 由于具有灵敏度高、成本低、分析速度快等特点,被公认为是 现场检测痕量重金属离子最有效的方法之一,加之其兼具仪 器的便携性,因此在环境科学中得到了高度发展^[7-9]。

作者简介:丁可武,男,福建技术师范学院讲师,硕士。

通信作者:代莉莉(1993—),女,武汉大学实验师,硕士。
 E-mail:Lilydai@whu.edu.cn
 黄迪惠(1983—),男,福建技术师范学院副教授,博士。
 E-mail:huangdihui@163.com

金属有机框架结构(Metal organic framework, MOF)作为21世纪材料研究的热点,具有丰富且可调节 的微孔结构、开放的金属活性位点和较大的比表面积而 备受关注^[10-13]。同时,MOF 材料在储能、储气与分离、 药物输送、催化、化学传感等其他领域具有广阔的应用前 景^[14-18]。目前,MOF 材料由于导电性和水溶性较差,在 电化学检测方向上受到限制,而多壁碳纳米管(SWCNT) 具有高表面积、高电导率和易于官能化的特性,是一种出 色的支撑结构,通过固定化其他化学物质(如金属 NP 和有 机分子)可以进一步改善电化学分析的性能^[19]。由于其出 色的电子转移能力,较大的表面积及良好的结构,机械和 电子性能,SWCNT 提供了强大的电催化活性和高灵敏度。

Cadevall 等^[20]设计了 BiNPs 修饰电化学传感器,并 将其应用于海水样品中重金属含量检测中。刘晓伟等^[21] 通过制备 Fe₃O₄ @C/[BSMIM]HSO₄/GCE 电化学传感 器,并将其用于检测水中的 Pb²⁺含量。He 等^[22]通过电 沉积方法制备 BiNPs@Ti₃C₂Tx,构建电化学传感器,并 用于 Pb²⁺和 Cd²⁺的同时检测。Theerthagiri等^[23]制备 了 Bi-MOF 材料并用其对玻碳电极进行修饰改性制作了 新型铜离子电化学传感器。研究拟基于铋基金属有机骨 架(Bi-MOF)材料制备方案,进一步通过溶剂热法制备 Bi-Co-BTC 材料,并以此构建重金属电化学传感器,进而应 用于食品中 Zn²⁺、Cd²⁺、Pb²⁺含量的同时检测,旨在为建 立新型快速检测食品中重金属残留的方法。

1 试验与方法

1.1 仪器与试剂

多壁碳纳米管(MWCNT):上海阿拉丁生化科技股份有限公司;

萘烷全氟化物离子交换树脂(Nafion):阿法埃莎(中国)化学有限公司;

锌标准溶液、镉标准溶液、铅标准溶液:离子质量浓 度为(1000±1) μg/mL,国家有色金属及电子材料分析 测试中心;

硝酸铋(Ⅲ)五水合物[Bi(NO₃)₃・5H₂O]、硝酸钴 (Ⅱ)六水合物[Co(NO₃)₂・6H₂O]、1,3,5-苯三甲酸 (H₃BTC)、N,N-二甲基甲酰胺(DMF)、甲醇(MeOH)、冰 醋酸、三水合乙酸钠(NaAc・3H₂O)、氯化钾、铁氰化钾 (K₃[Fe(CN)₆]):分析纯,国药集团化学试剂有限公司;

茶叶:市售;

超纯水纯化系统: Milli-Q MillIpore 型,电阻 18.2 MΩ.美国 Merck Millipore 公司;

电化学工作站:CHI660E型,上海辰华仪器公司;

精密 pH 计:PHS-3C 型,上海虹益仪器仪表有限公司; 电恒温鼓风干燥箱:GZX-GF101-3-BS-ll 型,上海跃 进理疗机械有限公司; 密闭式智能微波消解仪:MWD-620型,上海元析仪器有限公司;

X-射线粉末衍射仪:UltimaIV型,日本理学公司;

场发射扫描电子显微镜:Nova NanoSEM230型,美国 FEI公司。

1.2 材料制备

1.2.1 Bi-Co-BTC 制备 向圆底烧瓶中加入 10.0 mL DMF 和 20.0 mL MeOH, 超声分散混匀; 加入 0.10 mmol 的 $Bi(NO_2)_2 \cdot 5H_2O_2O_075 \text{ mmol } Co(NO_2)_2 \cdot 6H_2O$ 和 0.40 mmol 的 H₃BTC, 超声分散 40 min, 获得均匀粉红色 溶液,转移至 50 mL 特氟龙衬里不锈钢高压釜,以 5 ℃/min 的速度加热至 120 ℃,保持 12 h,通过 DMF 离 心洗涤,获得粉色的 Bi-Co-BTC,60 ℃真空干燥 10 h,研 磨成粉色颗粒,收集备用。此外,通过改变 Co(NO₃)₂• $6H_2O 添加量, 调整 Bi-Co-BTC 的形貌和性能。为了与$ Bi-Co-BTC 比较,通过改变不同的金属盐制备5种铋基双 核金属有机骨架材料,包括 Bi-Ag-BTC、Bi-Ce-BTC、Bi-Cu-BTC、Bi-Ni-BTC、Bi-Zn-BTC。为了与双核 Bi-Co-BTC 比较, 通过 0.1 mmol Bi(NO₃)₃ • 5H₂O, 0.1 mmol Co(NO₃)₂ • 6H₂O制备白色的 Bi-BTC、紫色的 Co-BTC。 1.2.2 Bi-Co-BTC 制备 将多壁碳纳米管于浓硝酸中 90 ℃恒温回流 3 h,获得 MWCNTs。将 5 mg MWCNTs 和 1 mg Bi-Co-BTC 分散在 5 mL 含 0.2% Nation 的 DMF 中,超声分散 40 min,制备 Bi-Co-BTC/MWCNTs 复合材 料溶液。60 ℃真空干燥 72 h,获得 Bi-Co-BTC/ MWCNTs,研磨成粉末,收集备用。通过改变 Bi-Co-BTC 添加量,制备不同类型的Bi-Co-BTC/MWCNTs。

1.2.3 修饰电极制备 将1 mg Bi-Co-BTC/MWCNTs分散在1 mL含0.2% Nafion的DMF中,制备Bi-Co-BTC/ MWCNTs修饰液。在玻碳电极表面滴涂6μLBi-Co-BTC/MWCNTs复合材料修饰液,制备Bi-Co-BTC/ MWCNTs/GCE。通过改变Bi-Co-BTC/MWCNTs/GCE。。通过改变Bi-Co-BTC/MWCNTs/GCE。同时 制备不同类型的Bi-Co-BTC/MWCNTs/GCE。同时 制备不同类型修饰电极,包括MWCNTs/GCE、Bi-BTC/ MWCNTs/GCE、Co-BTC/MWCNTs/GCE。

1.3 **电化学检测**

在三电极系统中进行电化学操作,三电极系统由修 饰电极为工作电极、饱和甘汞电极为参比电极、铂电极为 辅助电极组成。在0.1 mol/L 含有5 mmol/L K₃[Fe(CN)₆]/K₄[Fe(CN)₆]的KCl溶液中,采用CV和 EIS进行电化学表征。在0.1 mol/L 醋酸盐缓冲液中,基 于差示脉冲阳极溶出伏安法(Differential pulse anode stripping voltammetry,DPASV)对Zn²⁺、Cd²⁺、Pb²⁺同时 检测。DPASV扫描电位范围为 $-1.4 \sim -0.4$ V,电位增 量为4 mV,电位幅度为50 mV,脉冲宽度为50 ms,间隔 时间为0.5 s。试验流程见图1。

2 结果与分析

2.1 材料筛选与优化

为了寻找合适的制备铋基双核 MOF 材料,考察了不

同金属离子与铋离子制备 MOF 材料。由图 2 可知,使用 Bi-Co-BTC 检测 Cd²⁺ 具有良好的检测性能;采用双核 MOF 材料 Bi-Co-BTC 检测Cd²⁺ 时,其检测效果比单纯

Figure 2 Material selection and optimization

使用 Bi-BTC 或 Co-BTC 更加优异; 洗择 0.075 mmol Co(NO₃)₂ • 6H₂O 制备的 Bi-Co-BTC 检测 Cd²⁺ 具有较 高的溶出峰电流;随着 Bi-Co-BTC 添加量的增大,修饰电 极的催化性能逐渐提升,当 Bi-Co-BTC 添加量>1.5 mg 时,电极催化性能有所降低,可能是由于 MWCNTs 表面 负载过多的 Bi-Co-BTC, 阻碍了 Cd²⁺在 Bi-Co-BTC/ MWCNTs 表面的沉积溶出;当 Bi-Co-BTC/MWCNTs 滴 涂量为 2~6 µL 时,随着 Bi-Co-BTC/MWCNTs 滴涂量的 增加,复合材料的富集效果以及电催化能力逐渐提高,促 使 Cd^{2+} 溶出峰电流明显增强,而滴涂量为 6~12 μ L 时, 随着滴涂量的增加,阻碍了 Cd²⁺ 在其表面的富集,导致 Cd²⁺溶出峰电流明显下降;由于 Cd²⁺在 Bi-Co-BTC 表面 易于沉积溶出,且 MWCNTs 有着良好的导电性与电催化 活性,导致 Cd²⁺在 Bi-Co-BTC/MWCNTs 的溶出峰电流 最高,空白溶液中无 Cd²⁺溶出峰电流,表明 Bi-Co-BTC/ MWCNTs 能够对 Cd²⁺ 进行高灵敏度检测分析; Bi-Co-BTC 电催化性能较差导致其氧化还原峰电流较低, MWCNTs 有着良好的电催化活性促使其氧化还原峰电 流明显提高,而在 MWCNTs 修饰下 Bi-Co-BTC 的电催化 性能明显提高从而使其氧化还原峰电流最高:GCE、Bi-Co-BTC/GCE、 MWCNTs/GCE 及 Bi-Co-BTC/ MWCNTs/GCE的阻抗值分别为 134.7,120.3,113.4, 86.81 Ω, Bi-Co-BTC/MWCNTs 的阻抗值较小,表明其具 有卓越的导电性。综上, Bi-Co-BTC/MWCNTs/GCE 具 有良好的电催化性和导电性,且能够对 Cd²⁺ 进行高灵敏 检测分析。

2.2 材料形貌表征分析

由图 3 可知,Bi-BTC 呈立体棱柱状结构且有明显的 形貌条纹;Co-BTC 呈类似珊瑚的立体结构;Bi-Co-BTC 呈螺纹状的立体结构;Bi-Co-BTC/MWCNTs 为长条状的 Bi-Co-BTC 附着在网状的 MWCNTs 表面,且 MWCNTs 如触角般缠绕着 Bi-Co-BTC;Bi-Co-BTC/MWCNTs 为 Bi-Co-BTC 附着在 MWCNTs 上;Bi-BTC 的 XRD 图谱显示 出清晰强烈的衍射峰,表明 Bi-BTC 具有良好的高结晶 性;Co-BTC 的 XRD 图谱显示出尖锐的衍射峰,表明 Co-BTC 具有良好的晶体结构;MWCNTs 的 XRD 图谱显示 出窄而强的峰,表明 MWCNTs 具有良好的结晶度;Bi-Co-BTC 的衍射峰具有 Bi-BTC 和 Co-BTC 的衍射峰,表 明其具有类似单 MOF 的晶体结构;Bi-Ni-BTC 和 MWCNTs 的衍射峰位置可以在 Bi-Ni-BTC/MWCNTs 的 衍射峰位置找到。综上,通过溶剂热法和超声自组装成 功制备了 Bi-Ni-BTC/MWCNTs。

2.3 检测条件优化

由图 4 可知, pH 值相同时, NaAc-HAc 缓冲液的 Cd²⁺溶出峰电流最为明显。当 pH 值为 3.75~4.25 时, 随着 pH 值的升高, Cd²⁺溶出峰电流逐渐增强, 当 pH 值 为 4.25~5.25 时, Cd²⁺溶出峰电流逐渐减弱, 主要是由于 MOF 材料的母体为 1,3.5-苯三甲酸, 该母体外围有大量 的一COOH, 使材料具有 pH 响应。因此, 选择 pH 4.25 为醋酸盐缓冲液的最佳 pH 值。当富集电位为一0.90~ -1.45 V时, 随着富集电位负移, 溶出峰电流明显增强, 富集电位为-1.40 V时有较高的溶出峰电流, 且溶出峰

Figure 3 Materials characterization

图 4 试验条件优化

Figure 4 Optimization of experimental conditions

电流趋于稳定。因此,选择富集电位为一1.40 V。随着富 集时间的增加,Cd²⁺溶出峰电流明显增加,在 270 s 后溶 出峰电流趋于稳定,因此,选择 270 s 作为富集时间。综 上,最佳检测条件为醋酸缓冲液 pH 4.25、富集电位 -1.0 V、富集时间 270 s。

2.4 标准工作曲线与检出限

在优化的试验条件下,采用 DPASV 检测方法,使用 Bi-Co-BTC/MWCNTs/GCE 检测溶液中的重金属含量。 先对 Zn^{2+} 、 Cd^{2+} 、 Pb^{2+} 分别检测,再对三金属同时检测, 分别算出各自的检出限(LOD=3S/N)。扣除背景电流 的干扰,制备标准曲线,结果见表 1。

分别检测时,当样品质量浓度为 $1\sim 500 \text{ ng/mL}$ 时, Zn²⁺质量浓度与溶出峰电流的线性回归方程为 $\triangle I =$ 2.071 0+0.331 1C, R^2 为 0.997 9,检出限为 0.040 3 ng/mL; Cd²⁺质量浓度与溶出峰电流的线性回归方程为 $\triangle I =$ -0.657 0+ 0.863 1C, R^2 为 0.998 8,检出限为 0.005 69 ng/mL;当样品质量浓度为 $1\sim 750$ ng/mL 时, Pb²⁺质量浓度与溶出峰电流的线性回归方程为 $\triangle I =$ 0.397 1+0.451 4C, R^2 为 0.998 0,检出限为 0.023 9 ng/mL。

三金 属 同 时 检 测 下,当 样 品 质 量 浓 度 为 1 ~ 500 ng/mL 时, Zn^{2+} 质量浓度与溶出峰电流的线性回归 方程为 $\Delta I = 1.561 4 + 0.337 4C, R^2 为 0.991 5,$ 检出限为 0.067 8 ng/mL;Cd²⁺质量浓度与溶出峰电流的线性回归 方程为 $\Delta I = -0.150 5 + 0.758 1C$,R²为 0.992 9,检出限 为 0.007 47 ng/mL;Pb²⁺质量浓度与溶出峰电流的线性 回归方程为 $\Delta I = -0.444 9 + 0.560 8C$,R²为 0.998 2,检 出限为 0.027 5 ng/mL。

2.5 重现性与稳定性

通过 5 次平行测定质量浓度均为 100 ng/mL 的 Zn²⁺、Cd²⁺、Pb²⁺标准溶液,考察 Bi-Co-BTC/MWCNTs/ GCE 的重现性,其溶出峰电流的相对标准偏差分别为 3.36%,3.55%,2.41%,表明试验制备的电极具有良好的

表1 基于 Bi-Co-BTC/MWCNTs 的电化学传感器 检测 Zn²⁺、Cd²⁺、Pb²⁺

Table 1 Summary of individual and simultaneous detection of Zn^{2+} , Cd^{2+} and Pb^{2+}

方法	重金离	质量浓度范围/	LOD/	D ²
	子属	$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	K °
单标检测	Zn^{2+}	$1\!\sim\!500$	0.040 3	0.997 9
	Cd^{2+}	$1\!\sim\!500$	0.005 69	0.998 8
混样测试	Pb^{2+}	$1\!\sim\!750$	0.023 9	0.998 0
	Zn^{2+}	$1\!\sim\!500$	0.067 8	0.991 5
	Cd^{2+}	$1\!\sim\!500$	0.007 47	0.992 9
	Pb^{2+}	$1\!\sim\!500$	0.027 5	0.998 2

重现性。为了探究 Bi-Co-BTC/MWCNTs/GCE 的稳定性,将修饰电极于室温放置7 d 后测定质量浓度为 100 ng/mL的 Zn^{2+} 、 Cd^{2+} 、 Pb^{2+} 溶液,其溶出峰电流分别降低了 3.59%,3.02%,3.28%,表明试验制备的电极具有良好的稳定性。

2.6 **实际样品检测**

从超市购买两种品牌的茶叶,进行微波消解制备样品。将样品分为两组,一组加入不同含量的Cd²⁺标准溶液,使用Bi-Co-BTC/MWCNTs/GCE电化学传感器进行加标回收试验,通过AAS比对,结果见表2。另一组同时加入不同含量的Zn²⁺、Cd²⁺、Pb²⁺标准溶液,并用0.1 mol/L pH值为4.25 的NaAc-HAc缓冲液稀释、定容,标注样品I、II,进行加标回收试验,通过ICP-MS比对,结果见表3。

检测茶叶中的 Cd2+含量的加标回收试验,通过电化

学传感器检测的数值能够与 AAS 检测数据相比对。此 外,同时检测时,茶叶中的 Zn^{2+} 、 Cd^{2+} 、 Pb^{2+} 加标回收率 分别为 97.21% ~ 105.44%,92.22% ~ 106.10%, 93.97%~98.02%,由于试验存在系统误差,导致加标回 收率>100%,但检测数值能够与 ICP-MS 的检测结果相 比对。因此,该方法可用于茶叶中 Zn^{2+} 、 Cd^{2+} 、 Pb^{2+} 含量 检测。

3 结论

通过溶剂热合成方法、超声自组装方法,成功制备了 多壁碳纳米管负载的铋基金属有机骨架复合材料(Bi-Co-BTC/MWCNTs)。该材料有着立体螺旋结构,具有优异 的导电性与电催化性。通过材料筛选优化、检测条件优 化,采用多壁碳纳米管负载的铋基金属有机骨架复合材 料(Bi-Co-BTC/MWCNTs)电化学传感器能够超灵敏检

表 2 茶叶中 Cd²⁺ 含量检测

实际检出/	添加量/	结果/	回收率/	AAS/
$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	%	$(ng \cdot mL^{-1})$
0	20	19.87 ± 0.21	98.30~100.40	20.00 ± 0.23
0	100	99.01 ± 0.52	98.49~99.53	100.00 ± 0.19
0	200	200.01 ± 0.23	99.89~100.12	200.00 ± 0.16

Table 2 Detection of Cd^{2+} in tea (n=3)

样品	千人日	实际检出/	添加量/	结果/	回收率/	ICP-MS/
	里金偶	$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	$(ng \cdot mL^{-1})$	%	$(ng \cdot mL^{-1})$
Ι	Zn^{2+}	0	20	20.33	101.66	19.36
		0	100	105.44	105.44	99.93
		0	200	198.45	99.23	199.45
	Cd^{2+}	0	20	18.44	92.22	19.45
		0	100	96.08	96.08	99.87
		0	200	189.00	94.50	199.36
	Pb^{2+}	0	20	19.42	97.12	19.63
		0	100	96.13	96.13	99.36
		0	200	187.94	93.97	198.76
Ш	Zn^{2+}	0	20	19.44	97.21	19.89
		0	100	100.55	100.55	99.87
		0	200	196.61	98.31	199.65
	Cd^{2+}	0	20	19.60	97.31	19.70
		0	100	97.17	106.10	98.97
		0	200	193.55	93.15	199.54
	Pb^{2+}	0	20	19.60	98.02	19.80
		0	100	97.17	97.17	99.81
		0	200	193.55	96.78	199.87

表 3 茶叶中 Zn^{2+} 、 Cd^{2+} 、 Pb^{2+} 含量同时检测 Table 3 The simultaneous detection of Zn^{2+} , Cd^{2+} and Pb^{2+} in tea (n=3)

测 Zn²⁺、Cd²⁺、Pb²⁺含量,有着良好的浓度范围与优异的 检出限,并且能够用于同时检测茶叶中 Zn²⁺、Cd²⁺、Pb²⁺ 含量。后续将进一步在此修饰材料制备的基础上引入共 价修饰手段,使电极具有更好的稳定性,也可以进一步开 发可抛式的电极,从而克服稳定性和重现性不好的缺点。

参考文献

- LU Y Y, LIANG X Q, NIYUNGEKO C, et al. A review of the identification and detection of heavy metal ions in the environment by voltammetry[J]. Talanta, 2018, 178: 324-338.
- [2] KIM J J, KIM Y S, KUMAR V. Heavy metal toxicity: An update of chelating therapeutic strategies[J]. J Trace Elem Med Biol, 2019, 54: 226-231.
- [3] ALSHANNAQ A, YU J H. Occurrence, toxicity, and analysis of majormycotoxins in food[J]. Int J Environ Res Public Health, 2017, 14(6): 632.
- [4] SOYLAK M, KIZIL N. Determination of some heavy metals byflflame atomic absorption spectrometry before coprecipitation with neodymium hydroxide [J]. Journal of AOAC International, 2011, 94: 978-984.
- [5] MACIEL J V, KNORR C L, FLORES E M M, et al. Feasibility of microwave-induced combustion for trace element determination in Engraulis anchoita by ICP-MS [J]. Food Chemistry, 2014, 145: 927-931.
- [6] FURIA E, AIELLO D, DONNA L D, et al. Mass spectrometry andpotentiometry studies of Pb(II)-, Cd(II)- and Zn(II)-cystine complexes[J]. Dalton Transactions, 2014, 43: 1 055-1 062.
- [7] 钟平胜, 田春妹, 任佳丽. 电化学修饰电极在食品重金属快速 检测中的研究进展[J]. 食品与机械, 2018, 34(4): 192-196.
 ZHONG P S, TIAN C M, REN J L. Advances in application of electrochemical modified electrode in the fast detection of heavy metal[J]. Food & Machinery, 2018, 34(4): 192-196.
- [8] 韩爽, 丁雨欣, 冷秋雪, 等. 分子印迹电化学传感器在食品检测中的研究进展[J]. 食品与机械, 2021, 37(2): 205-210.
 HAN S, DING Y X, LENG Q X, et al. Research progress of molecularly imprinted electrochemical sensors in the fieldof determination in food safety[J]. Food & Machinery, 2021, 37(2): 205-210.
- [9] LIU Z G, CHEN X, LIU J H, et al. Robust electrochemical analysis of As (III) integrating with interference tests: A case study in groundwater[J]. Journal of Hazardous Materials, 2014, 278: 66-74.
- [10] GAN X, ZHAO H, WONG K Y. Covalent functionalization of MoS₂ nanosheets synthesized by liquid phase exfoliation to construct electrochemical sensors for Cd (II) detection[J]. Talanta, 2018, 182: 38-48.
- [11] BI L, LUAN X, GENG F. Microwave-assisted synthesis of hollow microspheres with multicomponentnanocores for heavy-metal removal and magnetic sensing [J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46 779-46 787.

- [12] ROUSHANI M, VALIPOUR A, SAEDI Z. Electroanalytical sensing of Cd²⁺ based on metal-organic framework modifed carbon paste electrode [J]. Sensors and Actuators B: Chemical, 2016, 233: 419-425.
- [13] MITRA S, PURKAIT T, PRAMANIK K. Threedimensional graphene for electrochemical detection of cadmium in Klebsiella michiganensis to study the infuence of cadmium uptake in rice plant [J]. Materials Science and Engineering: C, 2019, 103: 109802.
- [14] BAKHSHPOUR M, DENIZLI A. Highly sensitive detection of Cd
 (II) ions using ion-imprinted surfaceplasmon resonance sensors[J]. Microchemical Journal, 2020, 159: 105572.
- [15] YIN W, DONG X, JIE Y. MoS₂-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media [J]. ACS Applied Materials & Interfaces, 2017, 9(25): 62-70.
- [16] SENGUPTA P, PRAMANIK K, SARKAR P. Simultaneous detection of tracePb(II), Cd(II) and Hg(II) by anodic stripping analyses with glassy carbon electrode modifed by solid phase synthe sized iron-aluminate nano particles [J]. Sensors and Actuators B: Chemical, 2020, 89: 20-25.
- [17] ZHANG D, YANG S, MA Q. Simultaneous multi-elemental speciation of As, Hg andPb by inductively coupled plasma mass spectrometry interfaced with high-performance liquid chromatography[J]. Food Chemistry, 2020, 313: 126119.
- [18] JAYADEVIMANORANJITHAM J, NARAYANAN S S. A mercury free electrode based on poly O-cresophthalein complexone flmmatrixed MWCNTs modifed electrode for simultaneous detection of Pb (II) and Cd (II) [J]. Microchemical Journal, 2019, 148: 92-101.
- [19] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes: The route toward applications [J]. Science, 2002, 297 (5 582): 787-792.
- [20] CADEVALL M, ROS J, MERKOCI A. Bismuth nanoparticles integration into heavy metal electrochemical stripping sensor [J]. Electrophoresis, 2015, 36(16): 1 872-1 879.
- [21] 刘晓伟, 王伟浩, 顾援农, 等. 基于 Fe₃O₄@ C/[BSMIM]HSO₄/ GCE 传感器 检测铅离子[J]. 食品与机械, 2021, 37(10): 61-66. LIU X W, WANG W H, GU Y N, et al. Detection of lead based on Fe₃ O₄ @ C/[BSMIM]HSO₄/GCE sensor[J]. Food & Machinery, 2021, 37(10): 61-66.
- [22] HE Y, MA L, ZHOU L, et al. Preparation and application of bismuth/MXene nano-composite as electrochemical eensor for heavy metal ions detection[J]. Nanomaterials, 2020, 10(5): 866.
- [23] THEERTHAGIRI S, RAJKANNU P, KUMAR P S, et al. Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode [J]. Food and Chemical Toxicology, 2022, 167: 113313.