多肽荧光探针 HWEHH 对水中铜离子的 高通量检测

High-throughput detection of copper ions in water by polypeptide probe HWEHH

许迪雅^{1,2} 张海曼^{1,2,3} 张 新^{3,4} XUDi-ya^{1,2} ZHANG Hai-man^{1,2,3} ZHANG Xin^{3,4} 张雅丹^{1,2} 王 芳^{3,4} 张 琳^{1,2}

ZHANG Ya-dan^{1,2} WANG Fang^{3,4} ZHANG Lin^{1,2}

(1. 特医食品加工湖南省重点实验室,湖南长沙 410000;2. 中南林业科技大学食品科学与

工程学院,湖南长沙 410000;3. 食品安全监测与预警湖南省重点实验室,湖南长沙 410117;

4. 湖南省产商品质量检验研究院,湖南长沙 410117)

(1. Hunan Key Laboratory of Special Medical Food Processing, Changsha, Hunan 410000, China;

2. College of Food Science and Engineering, Central South University of Forestry and Technology,

Changsha, Hunan 410000, China; 3. Hunan Provincial Key Laboratory of Food Safety Monitoring and

Early Warning, Changsha, Hunan 410117, China; 4. Hunan Institute of Commodity Quality Inspection,

Changsha, Hunan 410117, China)

摘要:目的:开发组氨酸—色氨酸—谷氨酸—组氨酸—组 氨酸(HWEHH)水溶性荧光探针结合酶标仪实现水中 Cu^{2+} 的高通量检测。方法:通过选择性试验研究荧光探 针结合 Cu^{2+} 的特异性;滴定试验确定探针检测 Cu^{2+} 的线 性范围以及检测限,样品加标回收探究探针检测水中 Cu^{2+} 的准确度。结果:多肽探针溶液浓度为 2 μ mol/L 时,其检测 Cu^{2+} 的线性范围为 0~1.5 μ mol/L,线性方程 Y = -1 135.085 7X + 2 048.187 6,络合常数为 1.3 × 10⁶ mol/L,检测限为 0.036 μ mol/L,高通量检测的线性 范围为 0~1.5 μ mol/L,加标回收率为 93.6%~101.9%。 结论:HWEHH 多肽荧光探针可以实现水溶液中 Cu^{2+} 的 高通量检测。

关键词:铜离子;多肽荧光探针;高通量检测;选择性;饮用水

Abstract: Objective: A high-throughput detection method for

- 基金项目:食品安全监测与预警湖南省重点实验室开放基金项目 (编号:2020KFJJ03);湖南省教育厅科学研究项目(编 号:20B620);湖南省学位与研究生教育改革研究项目 (编号:2020JGY140)
- 作者简介:许迪雅,女,中南林业科技大学在读硕士研究生。
- **通信作者:**张琳(1984—),女,中南林业科技大学副教授,博士。 E-mail: zhanglin840514@126.com
- 收稿日期:2021-11-18 改回日期:2022-04-16

 Cu^{2+} was developed with a well designed water-soluble fluorescent probe (HWEHH) and the microplate reader. Methods: The specificity of the fluorescent probe for Cu²⁺ determination was studied with the selectivity experiment. The linear range and detection limit of the probe for Cu²⁺ determination was detected with titration experiment, and the accuracy of the probe for the detection of Cu²⁺ in water was studied with sample spiked recovery method. Results: The fluorescent probe was able to specifically detect Cu2+. When the concentration of peptide probe was 2 $\mu {
m mol}/{
m L}$, the linear range of Cu²⁺ detection was 0 \sim 1.5 μ mol/L. The linear equation was Y = -1 135.085 7X + 2 048.187 6, and the detection limit was 0.036 $\mu mol/L.$ The binding constant of HWEHH-Cu²⁺ complex was 1.3×10^6 mol/L. The linear range of high-throughput detection method was 0 \sim 1.5 μ mol/L, and the recovery rate was 93.6% ~101.9%. Conclusion: HWEHH peptide fluorescent probe can be used for highthroughput detection of Cu2+ in aqueous solution.

Keywords: copper ions; peptide fluorescent probes; highthroughput detection; selectivity; drinking water

铜是人体内必不可少的微量金属元素,其需求量仅次于铁和锌^[1]。但体内铜离子(Cu²⁺)含量过多又会对脏器造成负担,还会导致许多神经系统疾病,如阿尔茨海默

症^[2]、威尔逊氏病^[3]、唐氏综合征^[4]等。金属铜被广泛应 用于工业生产中,而生产中的废铜若未经过处理直接排 放会污染环境。动植物能够从环境中吸收 Cu2+, 又通过 食物链富集到人体^[5]。此外,人体对于 Cu²⁺的摄入还来 源于饮用水。世界卫生组织(WHO)规定,Cu²⁺在饮用水 中的含量不能超过 2 mg/L^[6],成年人铜的摄取量不应超 过 10~12 mg/d。目前,Cu²⁺的检测方法主要分为直接 检测法和间接检测法。直接检测法是利用 Cu²⁺ 本身的物 理、化学特性进行检测,主要包括原子吸收法[7]、电感耦 合等离子体质谱法和生物传感器法^[8]等。在利用原子吸 收光谱法进行测定时,不同光源灯对应着不同的元素,对 样品进行测量时需要及时更换光源灯。并目原子吸收光 谱法的标准工作曲线线性范围比较窄,灵敏度低和抗干 扰性弱等[9]。电感耦合等离子体质谱法检测离子的方法 简单、速度快,但仪器价格昂贵^[10]。间接检测法主要是利 用 Cu²⁺ 与荧光探针的特定化学反应进行检测。例如:荧 光光谱法、比色法、免疫分析法、酶分析法等。其中,荧光 光谱法因为其高灵敏度、强选择性、操作简单和响应速度 快的优点^[11],可以快速、大批量地检测样品中 Cu²⁺ 的含 量,近年来被广泛关注。

荧光探针分析法是一种建立在荧光分析光谱和探针 荧光强度变化上的识别方法^[12]。荧光分子探针技术对目 标物进行检测的工作机制主要包括分子内电荷转移^[13]、 光致电子转移^[14]、荧光共振能量转移^[15]、聚集诱导发 光^[16]及激发态分子内质子转移^[17]。近年来,大量有机分 子荧光探针被用于 Cu²⁺的检测,但有机分子荧光探针的 合成过程中会使用到大量有毒有害的试剂,污染环境,且 水溶性差。基于水溶性较好的多肽荧光探针因具有结构 简单、生物相容性好等特点^[18]受到关注。而荧光基团标 记探针合成较为复杂,且副产物多。因此采用内源性荧 光的多肽荧光探针能简化合成步骤,提高探针的水溶性, 降低成本。

高通量检测技术是指可以一次检测多个样品或者对 同一种样品进行多种检测的技术^[19],被广泛应用于食品 安全、药物/菌种筛选等领域^[20]。高通量检测多基于酶联 免疫测定技术、多重 PCR 技术、基因芯片检测技术等实 现单次多个样品的同时检测。其中多功能酶标仪因为拥 有多种检测模式(吸光度、荧光强度、时间分辨荧光等)、 操作简单、样品消耗量少、成本低等优点被广泛应用于高 通量检测中。

研究拟开发组氨酸一色氨酸一谷氨酸一组氨酸一组 氨酸(HWEHH)荧光探针,其中色氨酸(W)具有强荧光, 组氨酸(H)可以与 Cu²⁺络合,谷氨酸(E)可以增加多肽的 水溶性和稳定性。根据 Cu²⁺与多肽荧光探针络合后探针 荧光强度的变化,实现对 Cu²⁺的检测,并结合酶标仪实现 多肽荧光探针对水中 Cu²⁺的高通量检测,为实现水溶液 中的 Cu²⁺快速检测提供一种新方法。

1 材料与方法

1.1 材料与试剂

HWEHH(图 1)多肽荧光探针:分析纯,探针序列由 实验室设计,由上海强耀生物集团有限公司合成并纯化;

图 I HWEHH 结构

Figure 1 The structure of HWEHH

各金属阳离子:分析纯,国药集团化学试剂有限公司; 浓硫酸、浓盐酸:分析纯,成都市科隆化学品有限 公司;

4-(2-羟乙基)-1-哌嗪乙磺酸(HEPES):分析纯,美国 Sigma 公司;

试验用水为去离子水;

自来水:中南林业科技大学神农楼;

饮用水:中南林业科技大学神农楼直饮水系统。

1.2 **仪器与设备**

荧光分光光度计:F-4600型,日本高新技术公司; 紫外分光光度计:UV-2600型,日本岛津公司;

多功能酶标仪:Spectra Max i3x型,上海美谷分子仪器有限公司。

1.3 方法

1.3.1 溶液的配制 将冻干多肽探针(HWEHH)粉末直 接溶于 10 mmol/L NaOH 溶液中,制成浓度约为 1 mmol/L 的探针储备液,并将其稀释至 2 μmol/L 的标 准工作液。用紫外分光光度计检测多肽溶液的浓度。各 金属离子溶液采用其阴离子所对应的酸配制成浓度为 1 mmol/L 的离子溶液。

1.3.2 紫外可见分光光度法 扫描范围 200~800 nm, 以 10 mmol/L HEPES 缓冲溶液为空白背景调零,紫外分 光光度计对储备液稀释液进行检测。根据朗伯比尔定 律^[21]按式(1)测定可溶性多肽的浓度。

 $A = \Sigma bc$,

(1)

式中:

A——吸光度;

 Σ ——色氨酸的摩尔吸光系数,5 400 L/(mol·cm);

b----吸收池的厚度, cm;

c---溶液的摩尔浓度,mol/L。

1.3.3 荧光分光光度法

(1) 测定多肽荧光探针光谱:以280 nm 为激发波长,

发射波长为 290~450 nm,室温下对 HWEHH 多肽探针 溶液进行荧光测量。狭缝设置 10.0 nm,电压 500 V。对 HEPES 溶液、探针溶液、含有 Cu²⁺的多肽探针溶液进行 3 次荧光测量。

 (2)温度对探针稳定性的影响:选取不同的温度(25, 30,35,40,45,50,55,60 ℃)孵育 2 μmol/L 的标准工作液
 10 min 后进行荧光测量,记录不同温度下多肽探针的荧光强度。

(3) pH 对多肽荧光探针的影响:使用 HCl 和 NaOH 溶液调节 HEPES 缓冲溶液的 pH 分别为 2.0,4.0,6.0, 7.4,8.0,10.0。采用不同 pH 缓冲溶液稀释储备液得 2 μmol/L 的标准工作液,进行荧光测量记录溶液的荧光 强度,再向其中滴加 Cu²⁺,使溶液中 Cu²⁺最终浓度为 1.5 μmol/L,计算不同 pH 下多肽探针的荧光变化率。

(4) 标准曲线:

① 单个样品检测的标准曲线:向多肽探针溶液中滴 加 Cu²⁺进行荧光测量,直至荧光强度不再变化,记录每次 滴加 Cu²⁺的体积、浓度及荧光强度,绘制 Cu²⁺标准曲线, 并按式(2)计算解离常数^[22]。

 $\Delta F = F_0 - F_L = [(F_0 - F_a)/2M_0] \{ (L + M_0 + K_d) - [(L + M_0 + K_d)^2 - 4M_0L]^{1/2} \}, \qquad (2)$

式中:

 F_0 ——无 Cu²⁺存在下的荧光强度,AU;

 $F_{\rm L}$ ——Cu²⁺存在下的荧光强度,AU;

 F_{α} ———Cu²⁺饱和的荧光强度,AU;

 M_0 ——多肽与 Cu²⁺结合的实际浓度, μ mol/L;

L----游离的 Cu²⁺浓度, µmol/L;

*K*_d——解离常数,mol/L。

② 高通量样品检测的标准曲线:配置含有不同浓度 Cu²⁺的多肽荧光探针溶液(0.1,0.2,0.3,0.4,0.5,0.8,1.0, 1.2,1.5 μmol/L),加入 384 孔板中,于酶标仪中进行荧光 测量,激发波长 280 nm;发射波长 310~450 nm;记录荧 光强度并绘制标准曲线。 (5)选择性试验:标准工作液中滴加不同的金属阳离 子,使其最终浓度均为 1.5 μmol/L,对其进行荧光测量, 再向含有不同金属阳离子的工作液中滴加 Cu²⁺,使 Cu²⁺ 浓度为 1.5 μmol/L。记录荧光变化强度,并与只含 Cu²⁺ 工作液的荧光变化强度进行对比。

1.4 HWEHH 荧光探针检测限的确定

重复扫描标准工作液 20 次,按式(3)计算该荧光探 针在该浓度下的检测限^[23]。

$$L_{\rm OD} = 3\sigma/S, \qquad (3)$$

式中: L_{OD}----检测限, µmol/L;

σ——空白条件下扫描溶液 20 次的标准偏差;

S----标准线性方程的斜率。

1.5 实际样品的测定

对样品的荧光强度进行测量以排除样品自有的荧光 强度对试验准确性的影响。测量含有样品的工作液的荧 光强度,根据对应标准曲线计算样品中 Cu²⁺浓度,并进行 样品加标回收试验检测该方法的准确性。

2 结果与分析

2.1 HWEHH 的激发特征及 Cu²⁺ 对其荧光的淬灭作用

由图 2(a)可知, HWEHH 荧光探针在 280 nm 处有 最大吸收峰,吸光度为 0.033,此时储备液浓度为 1.22 mmol/L。由图 2(b)可知, HEPES 缓冲溶液在 354 nm 处无荧光峰, HWEHH 探针溶液在 354 nm 处有 较强的荧光峰。色氨酸的特征荧光峰约在 360 nm^[23],但 是多肽中色氨酸的峰会由于周围原子和电子的影响而发 生偏移,因此 HWEHH 荧光探针的荧光峰的峰值位于 354 nm。当向探针溶液中加入 Cu²⁺后,溶液在 354 nm 处荧光值大幅度降低,从 2 136 降低至 900.5,表明 HWE-HH 荧光的淬灭是由 Cu²⁺引起的。

2.2 温度对 HWEHH 荧光探针稳定性的影响

由图3可知,在试验范围内,30℃的荧光强度最大,

Figure 2 HWEHH characteristic spectrum

许迪雅等:多肽荧光探针 HWEHH 对水中铜离子的高通量检测

随着温度的升高,探针溶液的荧光强度峰值将会降低(由 2 485 降至1877)。这是因为溶液温度(30 ℃以上)越高, 介质黏度越低,分子之间的热运动越剧烈^[24],从而增加荧 光分子同溶剂分子之间的碰撞几率。由此得出荧光探针 的最佳工作温度为 30 ℃。而 25,30 ℃的荧光强度差异 率为 6%,考虑工作时的检测成本,后续所有试验均在 25 ℃ 下进行。

2.3 pH 对 HWEHH 荧光探针的影响

由图4(a)可知,当pH为2.0~8.0时,随着pH的升

高,荧光探针溶液在 354 nm 处的荧光强度也随之升高。 这是因为溶液 pH 值的变化影响荧光物质的电离状态,从 而影响荧光物质的荧光强度。由图 4(b)可知,Cu²⁺加入 引起的多肽探针荧光变化率也会受到 pH 的影响,多肽荧 光探针在酸性条件下与 Cu²⁺结合较弱,荧光淬灭效果不 明显,变化率为 0~0.2。增大 pH,淬灭效果越来越明显, 变化率达到 0.6 以上,说明其灵敏度也升高。当 pH 增大 到 7.4,8.0 时变化率达到最佳,8.0 之后 pH 越大,灵敏度 随之降低。这是因为酸性条件下,谷氨酸带正电,与 Cu²⁺ 产生静电斥力,难以络合,中性环境下,谷氨酸带负电,与 Cu²⁺有静电吸引作用,使络合更加稳定^[25]。组成多肽的 氨基酸等电点均 <7.6,在 pH 10 时,4 个多肽分子均带较 多负电荷有斥力作用,与 Cu²⁺的结合能力比 pH 7.4,8.0 的稳定性差。通常情况下液体酸碱值大部分为中性,因 此后续所有试验均在 pH 7.4 下进行。

2.4 HWEHH 荧光探针检测 Cu²⁺ 的标准曲线、解离 常数和检测限

由图 5(a)可知, Cu^{2+} 对该探针的淬灭效果具有浓度依赖 性。由图 5(b)可知,当 Cu^{2+} 浓度为 0~1.5 μ mol/L 时,随着 Cu^{2+} 浓度的增加,多肽探针的荧光强度降低,且其荧光强 度与 Cu^{2+} 呈负相关,此时解离常数为7.5×10⁻⁷ mol/L,

Figure 4 Fluorescence intensity and change rate of HWEHH fluorescent probe at different pH value

1.0 0.9

0.8

0.7

0.6

0.5

0.4 0.3 0.2

0.1

0.0

Cu

Fluorescence change rate

荧光变化率

络合常数是解离常数的倒数,为 1.3×10^6 L/mol,证明其 络合能力较强。其线性方程为 Y = -1 135.085 7X + 2 048.187 6(R^2 = 0.999),检测限为 0.036 μ mol/L。

2.5 HWEHH 荧光探针对 Cu²⁺ 的选择性

由图 6(a)可知,只有 Cu²⁺能引起探针荧光的显著变 化(0.81),其他金属阳离子对该探针无明显的淬灭效果 (0.03~0.05)。由图 6(b)可知,当溶液中存在其他金属阳 离子时,不会对 HWEHH 荧光探针识别 Cu²⁺产生影响。 2.6 HWEHH 高通量检测 Cu²⁺的标准曲线

由图 7 可知,关于 Cu²⁺ 浓度的线性方程为 Y=

离子种类 Ion species

(a) 无Cu²⁺存在

-283 958.437X+680 750.954(R²=0.981),说明可以利 用多肽荧光探针法同高通量检测技术结合来检测食品中 的 Cu²⁺浓度。

2.7 实际样品中 Cu²⁺ 的测定

自来水、饮用水在 310 nm 左右有水的拉曼峰,在其 他位置无峰出现,说明样品自身在 354 nm 处无荧光值, 不会影响 HWEHH 荧光探针对样品中 Cu²⁺ 浓度的检 测。由表 1 可知,自来水和饮用水中的加标回收率为 93.6%~101.9%,表明该荧光探针可以用于实际样品中 Cu²⁺含量的检测。

图 6 含有不同金属阳离子的多肽溶液的荧光变化率

Figure 6 Fluorescence change rate of HWEHH peptide solution containing different metal cations

high-throughput detection

表 □ 加标回收率	加标回收率
-----------	-------

Γable 1 Sta	andard rec	overy rate
-------------	------------	------------

样品	样品 Cu ²⁺ 浓度/	加标浓度/	测量浓度/	加标回
	$(\mu mol \bullet L^{-1})$	$(\mu \text{mol} \bullet L^{-1})$	$(\mu mol \bullet L^{-1})$	收率/%
		1	2.11	100.7
自来水	1.10±0.05	5	5.90	96.1
		3	13.30	93.8
饮用水		5	5.00	93.6
	0.35 ± 0.01	8	8.50	101.9
		13	13.20	98.8

3 结论

利用组氨酸一色氨酸一谷氨酸一组氨酸一组氨酸 (HWEHH)多肽作为荧光探针,检测了样品中 Cu²⁺的含 量。结果表明,当样品中存在 Cu²⁺时,Cu²⁺与 HWEHH 络合,阻断多肽分子内电子转移,导致 HWEHH 荧光的 淬灭,使探针荧光值降低。当荧光探针浓度为 2 μ mol/L 时,其对 Cu²⁺有较高的选择性,且检测的线性范围为 0~ 1.5 μ mol/L,线性方程为 Y= -1 135.085 7X+2 048.187 6, 检出限为 0.036 μ mol/L。利用 384 孔板结合 HWEHH 荧光探针可实现对 Cu²⁺的高通量检测。通过对实际水样 品(自来水、饮用水)中 Cu²⁺进行加标试验发现其回收率 较高,可有效实现水溶液中 Cu²⁺的检测。此外,该探针与 Cu²⁺的络合机制没有进行深入研究,后续可以采取核磁 共振、计算机模拟等方法对其作用机理进行进一步探究。

参考文献

[1] 鲍羽. 微量元素与人体的健康[J]. 郧阳师范高等专科学校学报, 2015, 35(6): 16-19.

BAO Y. Trace elements and human health[J]. Journal of Hanjiang Normal University, 2015, 35(6): 16-19.

[2] BYUNG-EUN K, TRACY N, DENNIS J T. Mechanisms for copper acquisition, distribution and regulation[J]. Nature Chemical Biology, 2008, 4(3): 176-185.

- [3] MOSTAFA M M, RAHMA E H, RADY A H. Chemical and nutritional changes in soybean during germination[J]. Food Chemistry, 1987, 23(4): 257-275.
- [4] RODRIGUEZ M R, BALSA L M, PIRO O E, et al. Synthesis, crystal structure, spectroscopic characterization, DFT calculations and cytotoxicity assays of a new Cu(II) complex with an acylhydrazone ligand derived from thiophene[J]. Inorganics, 2021, 9(2): 10.
- [5] 贾斌, 李漫, 郑嘉, 等. 一种高效检测铜离子的罗丹明类荧光探 针的构建及应用[J]. 化学试剂, 2021, 43(3): 370-375. JIA B, LI M, ZHENG J, et al. Construction and application of a rhodamine fluorescent probe with high efficiency for detecting copper ions[J]. Chemical Reagents, 2021, 43(3): 370-375.
- [6] LU Z W, DAI W L, LIU B C, et al. One pot synthesis of dandelionlike polyaniline coated gold nanoparticles composites for electrochemical sensing applications[J]. Journal of Colloid and Interface Science, 2018, 525: 86-96.
- [7] 赵国欣, 赵明, 李领川. 环境水中重金属离子的现代检测方法研究综述[J]. 中州大学学报, 2016, 33(6): 119-122. ZHAO G X, ZHAO M, LI L C. Review of modern detection methods of heavy metal ions in environmental water[J]. Journal of Zhongzhou University, 2016, 33(6): 119-122.
- [8] 辛思洁,林金石.土壤重金属检测方法应用现状及发展趋势[J]. 福建分析测试, 2018, 27(3): 32-37.
 XIN S J, LIN J S. Application status and development trend of soil heavy metal detection methods[J]. Fujian Analysis & Testing, 2018,

neavy metal detection methods[J]. Fujian Analysis & Testing, 2018, 27(3): 32-37. [9] 贺丽. 浅析多种分析方法在水环境中重金属离子检测中的应

用[J]. 产业与科技论坛, 2019, 18(6): 74-75. HE L. Analysis on the application of various analytical methods in the detection of heavy metal ions in water environment[J]. Industrial

& Science Tribune, 2019, 18(6): 74-75. [10] 袁敏, 武建超, 于劲松, 等. 水中重金属检测方法的研究进展[J]. 应用化工, 2015, 44(4): 724-728. YUAN M, WU J C, YU J S, et al. Research progress of detection methods of heavy metals in water[J]. Applied Chemical Industry, 2015, 44(4): 724-728.

- [11] 王书源,李忠海,付湘晋,等. 高荧光 Cd Te 量子点荧光探针测定 Cu²⁺ [J]. 食品与机械, 2015, 31(2): 125-129.
 WANG S Y, LI Z H, FU X J, et al. Water soluable Cd Te quantum dots as fluorescence probes for copper(Ⅱ) detection[J]. Food & Machinery, 2015, 31(2): 125-129.
- [12] 马婧怡,田冰,王鑫,等. 基于核酸适配体检测动物性食品中 卡那霉素残留研究进展[J]. 食品与机械, 2021, 37(12): 188-196.
 MA J Y, TIAN B, WANG X, et al. Research progress in aptasensors for the detection of kanamycin residues in animal-derived foods[J]. Food & Machinery, 2021, 37(12): 188-196.
- [13] CUI J, ZANG S P, NIE H L, et al. An ICT-based fluorescent probe for ratiometric monitoring the fluctuations of peroxynitrite in mitochondria [J]. Sensors and Actuators: B Chemical, 2021, 328: 129069.
- [14] LIANG L J, LIU C, JIAO X J, et al. A highly selective and sensitive

photoinduced electron transfer (PET) based HOCl fluorescent probe in water and its endogenous imaging in living cells[J]. Chemical Communications (Cambridge, England), 2016, 52(51): 7 982-7 985.

- [15] JIA X T, CHEN Q Q, YANG Y F, et al. FRET-based mito-specific fluorescent probe for ratiometric detection and imaging of endogenous peroxynitrite: Dyad of Cy3 and Cy5[J]. Journal of the American Chemical Society, 2016, 138(34): 10 778-10 781.
- [16] LIU Y, NIE J, NIU J, et al. Ratiometric fluorescent probe with AIE property for monitoring endogenous hydrogen peroxide in macrophages and cancer cells[J]. Scientific Reports, 2017, 7(1): 7 293.
- [17] SEDGWICK A C, WU L L, HAN H H, et al. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents[J]. Chemical Society Reviews, 2018, 47(23): 8 842.
- [18] 庞绪良. 多肽基 Cu²⁺, Hg²⁺ 荧光探针的合成和性能研究[D]. 聊城: 聊城大学, 2019: 3-6.
 PANG X L. Synthesis and properties of polypeptide-based Cu²⁺ and Hg²⁺ fluorescent probes[D]. Liaocheng: Liaocheng University, 2019: 3-6.
- [19] 戚平. 食品和环境水中合成色素的高通量筛查及快速检测技术研究[D]. 广州: 华南理工大学, 2014: 47-62.
 QI P. Research on high-throughput screening and rapid detection technology of synthetic pigments in food and environmental water [D]. Guangzhou: South China University of Technology, 2014: 47-62.
- [20] YURI O, KANAKO S, TAEKO T, et al. Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a highthroughput screening method for environmental bacteria with various growth rates[J]. PLoS One, 2019, 14(4): 533.
- [21] 黎卫强. 紫外可见分光光度计在食品检测中的应用[J]. 企业科技与发展, 2010(6): 15-16.
 LI W Q. Application of UV-Vis spectrophotometer in food detection[J]. Sci-Tech & Development of Enterprise, 2010(6): 15-16.
- [22] MAIRI N C, JIANG D, WAIN A J, et al. Mechanistic studies of Cu (II) binding to amyloid-beta peptides and the fluorescence and redox behaviors of the resulting complexes [J]. The Journal of Physical Chemistry B, 2008, 112(28): 804611.
- [23] ZHANG Y D, CAI Y H, HE Y H, et al. A label-free fluorescent peptide probe for sensitive and selective determination of copper and sulfide ions in aqueous systems[J]. RSC Advances, 2021, 11 (13): 7 426-7 435.
- [24] 秦翠芳, 李磊, 俞宪同, 等. 含单个色氨酸的多肽分子的荧光
 特性研究: pH 及金属离子的响应[J]. 光谱学与光谱分析, 2017, 37(2): 476-480.

QIN C F, LI L, YU X T, et al. Study on the fluorescence characteristics of peptide molecules containing single tryptophan: The response of pH and metal ions [J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 476-480.

[25] 张碧波. 荧光小分子及荧光多肽探针在分析检测中的设计和 应用[D]. 北京:清华大学, 2017: 1-5.

ZHANG B B. Design and application of fluorescent small molecule and fluorescent polypeptide probe in analysis and detection[D]. Beijing: Tsinghua University, 2017: 1-5.