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Intelligent online detection method for food packaging

defects based on improved deep learning
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Abstract: [Objective] To propose an intelligent detection method that balances detection accuracy and speed for the problems of low
manual detection efficiency, high missed and false detection rates, and insufficient recognition ability of traditional machine vision
algorithms for complex texture packaging and small defects in packaging defect detection at current food production lines. [ Methods]
Using Swin Transformer as the core feature extraction module, this study utilizes its modeling ability for global image information and multi-
scale feature fusion advantages to accurately capture defect features, such as small wrinkles and printing offsets on the packaging surface.
Simultaneously, the YOLOv12 fast detection framework is introduced, which optimizes the neck network and loss function to achieve fast
localization and classification of defect areas, forming an integrated detection process of high-precision feature extraction and fast object
detection. [ Results] The average detection accuracy of this method for common defect types is higher than 96.50%, improving by over
10.00% compared to the method before optimization. Single image detection takes less than 10 ms, meeting the real-time detection
requirement of 30 frames per second for the production line. Additionally, this method still maintains stable performance in tests for different
foods, demonstrating significantly better robustness than the comparative method. [ Conclusion] By integrating the advantages of Swin

Transformer feature extraction with the fast detection capability of YOLOvV12, this study solves the core problem of balancing accuracy and
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speed in food packaging defect detection.
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Figure 1 Intelligent detection system for packaging

defects in food production lines
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Table 3 Model detection performance before and after
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Table 6 Sorting effects for different targets
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