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羊肚菌多糖免疫调节的分子机制
与构效关系研究进展
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摘要：羊肚菌（Morchella esculenta）是一种珍贵食药用菌，富含多酚、多肽和多糖等活性物质。羊肚菌多糖（Morchella 

esculenta polysaccharides，MEP）是一类由醛糖或酮糖通过糖苷键聚合形成的碳水化合物，具有免疫调节、降血脂、抗疲

劳等多种生物活性。随着研究的深入，MEP 的市场需求不断增加，优化其提取和纯化工艺显得尤为重要。免疫调节是

生物体的关键过程，MEP 作为主要活性成分，因其免疫调节功能备受关注，然而其具体作用机制及构效关系尚不明确。

文章综述了 MEP 的不同提取、纯化方法，以及多糖的结构差异和免疫调节活性机制，并解析其潜在的构效关系。
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Research progress on the molecular mechanisms and structure-activity 

relationships of Morchella esculenta polysaccharides in immune regulation
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Abstract: Morchella esculenta is a precious edible and medicinal fungus, rich in active substances such as polyphenols, polypeptides and 

polysaccharides. M. esculenta polysaccharides (MEP) are a class of carbohydrates formed by the polymerization of aldose or ketose through 

glycosidic bonds, exhibiting a variety of biological activities including immune regulation, hypolipidemic effects, and anti-fatigue 

properties. With the deepening of research, the market demand for MEP is constantly increasing, making it particularly important to 

optimize its extraction and purification processes. Immune regulation is a key process in living organisms, and as the main active ingredient, 

MEP has attracted significant attention for its immunoregulatory function. However, its specific mechanism of action and structure-activity 

relationships remain unclear. This study reviews different extraction and purification methods of MEP, as well as the structural differences 

and immunoregulatory activity mechanisms of polysaccharides, and analyzes the structure-activity relationships.
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羊肚菌（Morchella esculenta）隶属于子囊菌门科盘菌

目羊肚菌科羊肚菌属，因其具有类似于羊胃的蜂窝状帽子

而得名［1］，中国现已报道 20 多个种类。目前，人工栽培的

羊肚菌主要包含梯棱羊肚菌（Morchella importuna）、六妹

羊肚菌（Morchella sextelata）等，主产于四川、贵州、云南等

中西部地区。羊肚菌是一种珍贵的食药用菌，由于其独特

的感官特性和丰富的营养价值而受到世界各国的高度重

视，被广泛使用［2］。其营养组分包括多糖、蛋白质、脂肪酸、
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维生素、矿物质和有机酸，这也是它具有复杂感官属性和

健康益处的原因［3］。从羊肚菌中分离出的几种生物活性化

合物中，多糖是最重要的成分之一。免疫调节作为重要的

生理过程，可以识别和破坏外来有害物质或生物体以防御

疾病［4］，是羊肚菌多糖的典型生物活性之一。免疫系统参

与免疫防御、监视和调节 ，与各种疾病的病因密切相关 。

免疫细胞和分泌物负责消除外来病原体，并在免疫系统中

发挥防御和保护作用［5］。然而，免疫调节活性的表现与其

作用机制和结构的多样性密切相关，并且尚未被很好地阐

述。因此，深入对比研究羊肚菌多糖的高效提取、纯化方

法，探究其免疫调节机制及构效关系很有必要。基于此，

文章拟综述羊肚菌多糖在免疫调节中的机制及构效关系，

为其功能活性的深入研究和开发利用提供参考。

1　羊肚菌多糖的分离、纯化及结构特征

羊肚菌的生产方法直接影响其多糖的产量和结构特

性，主要体现在相对分子质量（Mw）、单糖类型、摩尔比和

糖苷键模式上（表 1）。传统的 MEP 提取方法主要包括热

水 浸 提 法 和 碱 性 提 取 法 。 传 统 提 取 方 法 操 作 简 单、成 本

低 ，但也存在提取时间长 ，提取温度高 ，多糖结构易被破

坏等缺点。因此，一些新的提取技术被逐渐应用于 MEP

的提取过程中，如超声提取、微波萃取、脉冲电场提取、亚

临界水提取等。

1.1　热水提取法

热水提取法是最常用的提取 MEP 的技术，其主要利

用大多数多糖溶于热水的原理。使用热水在高温下提取

1.0~1.5 h［12］。处理温度和处理时间的增加通常会提高多

糖 的 提 取 率 ，但 过 高 的 温 度 也 会 对 多 糖 的 结 构 和 生 物 活

性 产 生 不 利 影 响［13］。 较 高 的 提 取 温 度 对 β -（1→3）/（1→
6）- 葡 聚 糖 的 产 量 和 含 量 有 积 极 影 响［14］。 然 而 ，高 于

100 ℃ 的 高 温 可 能 会 导 致 β - 葡 聚 糖 降 解 ，当 温 度 高 于

150 ℃持续 15 min 时，三螺旋结构不再存在，这种构象与

免疫活性密切相关［15］。Cai 等［6］在 80 ℃下提取 2.5 h，所得

到的 FMP-1 的 Mw 为 47，由甘露糖（Man）、葡萄糖（Glc）和

半乳糖（Gal）组成，摩尔比为 1.00∶7.84∶1.24，分支度（DB）

表 1　不同提取方法的羊肚菌多糖结构差异

Table 1　Structural differences of MEP using different extraction methods
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值为 0.34，表示高度分支结构。戴宗一等［16］通过试验发现，

采用热水提取法时，时间、液料比以及提取温度对 MEP 含

量的影响程度为液料比>温度>时间，得到的最适提取条

件为提取温度 86.19 ℃、液料比 31.52∶1 （mL/g）、提取时间

161.30 min。

1.2　碱性提取法

碱 性 提 取 法 利 用 了 一 些 碱 性 多 糖 或 高 Mw 多 糖 不 易

溶 于 热 水 的 特 性 ，它 们 在 稀 碱 溶 液 中 的 溶 解 度 通 常 比 在

热 水 中 的 溶 解 度 大 ，通 常 用 于 提 取 热 水 萃 取 得 到 的 残 留

物中剩余的多糖。碱处理可导致细胞壁的破坏和粗纤维

结 构 的 降 解 ，使 细 胞 释 放 胞 内 多 糖 并 提 取 碱 溶 性 部 分 。

使用碱溶液提取时，提取温度应保持在 10 ℃以下，否则多

糖容易降解。Peng 等［7］在蒸馏水中浸提 3 次后，过滤收集

梯棱羊肚菌残留。采用 0.3 mol/L 的 NaOH 提取残基 3 次，

每次 12 h，再在 4 ℃下通过乙醇沉淀，得到的粗多糖产量

为 3.08%。 其 Mw 为 20.6，由 N- 乙 酰 葡 糖 胺（GlcNAc）和

Glc、Man、Gal 组 成 。 其 中 GlcNAc 是 一 种 在 MEP 中 较 罕

见的单糖，可能是碱处理条件下发生了脱乙酰化反应，新

型单糖的加入赋予了 MEP 更优的免疫调节活性。

1.3　亚临界水提取法

亚临界水提取法则是利用亚临界水在特殊状态下具

有 强 溶 解 性 和 渗 透 能 力 的 特 性 ，通 过 控 制 温 度 和 压 力 条

件 ，使 多 糖 从 固 体 原 料 中 有 效 溶 出 并 提 取 出 来 。 温 度 在

亚 临 界 水 提 取 法 中 起 着 至 关 重 要 的 作 用 。 一 般 来 说 ，较

低的温度（低于 100 ℃）提高了水溶性物质的产量，而较高

的温度（高于 100 ℃）促进了具有较高 Mw 和由不同结构组

成（如蛋白葡聚糖或杂葡聚糖）的不溶性化合物的提取产

量［17］。在提取时间 17 min、提取温度 153 ℃和液料比 30∶

1 （mL/g）下 得 到 多 糖 MSP，产 量 为 18.09%，Mw 为

395.42［8］。与传统的方法相比，产量明显提高且无溶剂杂

质残留、对环境无污染、后处理简单。

1.4　超声辅助提取法

超 声 辅 助 提 取 法 主 要 是 利 用 超 声 波 的 机 械 效 应 、空

化效应 ，作用于羊肚菌原料 ，破坏细胞壁结构 ，从而加速

溶 剂 渗 透 和 多 糖 溶 出 。 它 可 与 多 种 方 法 协 同 作 用 。 Xu

等［9］对 尖 顶 羊 肚 菌 子 实 体 超 声/微 波 协 同 萃 取 进 行 了 研

究 ，在微波功率为 210.61 W，提取时间为 126.98 s 时得到

Mw 为 48.3 的 MEP，与传统方法相比，提取用时明显缩短、

溶剂用量少 ，可节省能源 ，多糖提取率高。同时 ，将超声

辅 助 提 取 法 和 深 共 熔 溶 剂 结 合 时 ，得 到 的 多 糖 MIP-D 的

提取率是热水提取法的 4.5 倍，并且具有更高的碳水化合

物（85.27%）和 硫 酸 盐 含 量（34.16%）［10］。 在 超 声 、微 波 的

影 响 下 除 提 高 多 糖 的 提 取 效 率 外 ，还 可 以 改 变 多 糖 的 结

构以增加其生物活性。

1.5　脉冲电场提取法

脉 冲 电 场 提 取 是 一 种 新 型 提 取 技 术 ，目 前 用 于 从 天

然生物材料中提取活性成分。该方法采用低温提取活性

多糖，不易破坏多糖结构，提取率高但具有成本高和设备

限制等缺点。通过脉冲电场提取来自深层发酵产生的羊

肚菌菌丝体的多糖，当电场强度为 18 kV/cm，脉冲数为 6，

液料比为 20∶1 （mL/g），所得 Mw 为 81.835［11］。

1.6　不同纯化方法概述

从 提 取 过 程 中 获 得 的 粗 多 糖 含 有 各 种 杂 质 ，例 如 色

素、蛋白质和其他物质。并且，由于羊肚菌中蛋白质等非

多 糖 成 分 浓 度 高 且 颜 色 较 深 ，通 常 需 要 先 从 粗 多 糖 中 去

除 杂 质 以 获 得 混 合 多 糖 ，然 后 将 它 们 分 离 成 各 种 单 糖 进

行 多 糖 纯 化 ，以 进 一 步 研 究 多 糖 的 性 质 、结 构 和 生 理 功

能。多糖的纯化过程分为 3 个步骤（图 1）：①  对粗多糖进

行脱蛋白和脱色处理。MEP 常见的脱蛋白方法主要包括

Sevage 法、三氯乙酸法和酶解法，常见的脱色素方法包括

活性炭吸附法、过氧化氢法和大孔树脂吸附法等；②  通过

柱色谱法进一步纯化粗多糖，主要包括离子交换层析、凝

图 1　羊肚菌多糖的分离和纯化

Figure 1　MEP isolation and purification
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胶渗透层析和亲和层析；③  通过浓缩、透析和冷冻干燥等

步骤获得均匀的纯多糖。

2　羊肚菌多糖的免疫调节活性及分子机制

免 疫 应 答 作 为 一 种 重 要 的 生 理 过 程 ，可 以 识 别 和 破

坏外来有害物质或生物以预防疾病。MEP 可通过先天免

疫优先激活并协同适应性免疫的双重机制发挥免疫调节

作用 ，通过激活巨噬细胞 ，快速启动先天免疫应答 ，增强

吞 噬 及 炎 性 因 子 释 放 ；通 过 促 进 树 突 状 细 胞 成 熟 和 抗 原

呈递，桥接并驱动适应性免疫，调控 T 细胞分化、B 细胞抗

体生成。此外，MEP 还可通过调节肠道菌群，增加短链脂

肪酸（SCFAs）产生和抑制氧化应激发挥免疫调节作用。

2.1　先天免疫激活

大多数关于 MEP 先天免疫调节活性的研究都集中在

它 们 对 巨 噬 细 胞 功 能 的 影 响 上 ，包 括 增 强 吞 噬 作 用 和 诱

导细胞因子的产生。其分子机制与特异性膜受体 Toll 样

受体（TLR）与丝裂原活化蛋白激酶（MAPK）和核因子 κB

（NF-κB）等信号通路的激活有关（图 2）。

2.1.1　增强巨噬细胞吞噬能力　吞噬作用是巨噬细胞的

基 本 功 能 之 一 ，在 一 定 程 度 上 可 以 反 映 人 体 免 疫 功 能 的

状态。巨噬细胞可以通过吞噬作用去除受损的细胞和病

原体，以维持身体的稳态［18］。Wen 等［19］研究表明，MEP 可

以通过影响巨噬细胞的吞噬活性来调节免疫力。从梯棱

羊肚菌子实体中分离得到一种 Mw 为 28.5 的多糖，该多糖

由 GlcNAc、Gal、Glc 和 Man 组 成 。 结 果 显 示 该 多 糖 显 著

增 强 了 巨 噬 细 胞 吞 噬 能 力 ，促 进 了 巨 噬 细 胞 对 病 原 微 生

物 的 防 御 能 力 ，MIPW50-1 显 著 的 免 疫 调 节 活 性 可 能 与

GlcNAc 的存在有关。此外，Li 等［20］从用羊肚菌发酵的大

豆残渣中提取多糖，得到 MP-1 型、MP-3 型和 MP-4 型 3 种

多糖，主要由 Gal、Man 和 Glc 组成，检测到少量阿拉伯糖

（Ara）、鼠 李 糖（Rha）和 木 糖（Xyl）。 结 果 显 示 ，MP-3 在

3 种 多 糖 中 对 巨 噬 细 胞 的 吞 噬 作 用 最 好 ，与 其 他 多 糖 相

比，MP-3 显示出略高的 Man 含量。来自灵芝子实体的水

溶 性 多 糖（GLP-3）主 要 由 Glc（92.7%）组 成 ，Mw 为 159.7，

发 现 GLP-3 具 有 显 著 的 免 疫 调 节 活 性 ，可 增 强 胞 饮 和 吞

噬能力［21］。

2.1.2　促进细胞因子分泌　细胞因子的分泌是巨噬细胞

免疫活性的评价指标之一 ，活化的巨噬细胞会增强 NO、

肿瘤坏死因子 -α（TNF-α）、白细胞介素因子（IL-1β）、（IL-

6）等介质的产生。NO 不仅能增强巨噬细胞的吞噬能力，

还参与抗炎、免疫抑制和辅助 T 细胞识别过程［22］，TNF-α

和 IL-1β对 巨 噬 细 胞 作 用 可 以 增 强 免 疫 反 应 并 诱 导 其 他

免疫调节因子的表达，IL-6 对吞噬作用、抗原呈递和炎症

调节有影响，并为 T 细胞提供第三信号以调节细胞和体液

免疫。从六妹羊肚菌菌丝体发酵液中分离出多糖（MSP-

Ⅱ），MSP-Ⅱ主要单糖成分由 Glc、半乳糖醛酸（GalUA）和

Gal 组成，其中 Glc 是含量最高的单糖，同时检测到少量岩

藻 糖（Fuc）、Rha 和 Man，可 能 含 有 α - 和 β - 糖 苷 键 。 用

600 μg/mL 的 MSP- Ⅱ 处 理 的 细 胞 中 的 NO 量 达 到

（21.180±1.021） μmol/L，结果接近脂多糖的作用效果，表

明 MSP- Ⅱ 可 以 很 好 地 促 进 巨 噬 细 胞 NO 的 分 泌 和 释

放［23］。Kuang 等［24］使用热水提取法从六妹羊肚菌中提取

得 到 多 糖 MSP-1，其 Mw 为 11.7，主 要 由 比 例 为 1.00∶1.25

的 Man 和 Glc 组成，与 Meng 等［23］在六妹羊肚菌中提取的

多 糖 结 构 存 在 差 异 ，可 能 与 提 取 程 序 和 六 妹 羊 肚 菌 的 生

长位置有关。Kuang 等［24］进一步探究发现，MSP-1 可以促

进 巨 噬 细 胞 增 殖 和 吞 噬 活 性 ，以 剂 量 依 赖 性 方 式 促 进

TNF-α和 IL-6 的释放，400 μg/mL 的 MSP-1 表现出最高的

释放量。同样，采用磁场辅助三相分配技术和凝胶渗透色

谱法提取的金针菇多糖 FVPTI，Mw 为 1.64，由 Fuc、Gal、Glc

和 Man 组成。试验结果表明，FVPT1 通过增加巨噬细胞中

NO、IL-1β和 IL-1 的分泌表现出良好的免疫调节活性［25］。

2.1.3　激活信号通路　

（1） TLR2/4 介 导 的 信 号 传 导 通 路 ：TLR 是 一 类 广 泛

存 在 于 巨 噬 细 胞、中 性 粒 细 胞 和 淋 巴 细 胞 表 面 的 蛋 白 质

识别受体，负责识别病原体相关分子。在 TLR 家族中，目

前已知 TLR4 和 TLR2 能够与糖基配体结合，这两种受体

在 启 动 先 天 免 疫 和 调 节 获 得 性 免 疫 中 起 着 核 心 作 用 。

TLR 识 别 糖 基 配 体 后 结 合 ，可 以 通 过 髓 系 分 化 因 子 88

（MyD88）介导的信号通路或 TLR 相关干扰因子介导的信

号 通 路 激 活 TNF 受 体 相 关 因 子 6（TRAF6）［18］，进 而 通 过

两种不同途径激活 NF-κB 和 MARK 发出传导信号。Wen

等［19］从 梯 棱 羊 肚 菌 子 实 体 中 分 离 得 到 一 种 新 型 多 糖

（MIPW50-1），可显著增强巨噬细胞的吞噬功能，TLR4 被

证 明 是 MIPW50-1 作 用 于 RAW264.7 细 胞 的 膜 受 体 。 此

外 ，Peng 等［7］从 梯 棱 羊 肚 菌 子 实 体 中 分 离 纯 化 得 到 的 多

糖（MIPB70-1），在结构上具有较高比例的 GlcNAc，Mw 为

20.6。 试 验 结 果 表 明 ，MIPB70-1 通 过 靶 向 巨 噬 细 胞 膜 上

的 TLR4 和激活 RAW264.7 细胞的下游信号通路，促进吞

图 2　羊肚菌多糖诱导巨噬细胞活化的分子机制

Figure 2　Molecular mechanism of macrophage activation 

induced by MEP
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噬 功 能 并 改 善 细 胞 因 子 的 分 泌 ，从 而 更 好 地 增 强 了 巨 噬

细 胞 在 体 内 发 挥 功 能 。 推 测 MIPB70-1 的 强 免 疫 调 节 活

性可能与 GlcNAc 有关。类似的，Lee 等［26］发现茯苓多糖

（PCSC）能够通过膜受体分化簇 14（CD14）、TLR4 和补体

受体 3（CR3）诱导 NO 的产生。

（2） MARK/NF-κB 信号通路：MAPK 家族是一组特定

的蛋白激酶，包括细胞外信号调节激酶（ERK）、Jun N 末端

激酶（JNK）和 P38，它们在巨噬细胞的活化和炎症相关基

因 的 表 达 中 起 着 调 节 作 用［27］。 许 多 真 菌 源 多 糖 通 过

MAPK 信号通路刺激巨噬细胞的细胞因子分泌。在细胞

未 受 刺 激 时 ，MAPK 保 持 静 止 状 态 ，当 细 胞 受 到 刺 激 时 ，

MAPK 通过两个特定位点的磷酸化被激活，激活的 MAPK

通过磷酸化转录因子调节相关基因的表达，从而介导与免

疫细胞活化相关的细胞过程［28］。此外，激活的 MAPK 信号

通路还可进一步介导和激活 NF-κB 通路以调节免疫反应。

NF-κB 控制与细胞凋亡、衰老、免疫和炎症相关的基因活

性 。 NF-κB 蛋 白 家 族 可 以 选 择 性 地 与 NF-κB 抑 制 蛋 白

（IκB）结合，调节许多基因的表达，参与细胞对外部刺激的

反应［29］。MEP 可通过 MAPK 和 NF-κB 信号通路进一步调

节 细 胞 因 子 和 其 他 因 子 的 分 泌 表 达 ，发 挥 其 免 疫 调 节 活

性。有研 究［30］表 明 ，从 尖 顶 羊 肚 菌 中 提 取 得 到 胞 外 多 糖

（EPMC）和胞内多糖（IPMC）两种多糖，其中 IPMC 可有效

下 调 一 氧 化 氮 合 酶（iNOS）表 达 和 NF-κB 的 DNA 结 合 活

性，并上调血红素加氧酶 1（HO-1）的表达，而 EPMC 则通

过刺激 P38、JNK 的表达，发挥免疫调节作用。热水提取

法 提 取 出 的 羊 肚 菌 多 糖 PMEP 和 乙 酰 化 修 饰 的 多 糖 Ac-

PMEP 均可通过调节 P38/MAPK 信号通路，促进巨噬细胞

吞 噬 作 用 、NO 产 生 和 TNF-α 分 泌 来 参 与 免 疫 调 节 ，其 中

Ac-PMEP 比 PMEP 具 有 明 显 的 免 疫 调 节 和 抗 炎 活 性［31］。

此外，从添加 0% 和 15% 黄芪根的基质上生长的平菇中提

取 得 到 多 糖（P0OP-I 和 P15OP-I），P15OP-I 的 Man、Glc、Gal

和 Ara 含量较高，半乳糖醛酸（GalA）含量低于 P0OP-I，二

者 均 能 通 过 JNK/MAPK、ERK/MAPK 和 NF-κB 信 号 通 路

诱 导 RAW264.7 细 胞 中 NO 和 TNF-α 的 生 成 。 P15OP-I 比

P0OP-I 对 NO 和 TNF-α 的产生具有更强的促进能力［32］。

2.2　适应性免疫调节

适 应 性 免 疫 调 节 则 聚 焦 抗 原 特 异 性 应 答 ，由 树 突 状

细胞（CD）介导抗原呈递，驱动 T/B 淋巴细胞分化（如 Th1/

Th2 平衡、抗体生成）进而发生适应性免疫调节。淋巴细

胞 是 体 内 的 主 要 免 疫 细 胞 ，包 括 T 淋 巴 细 胞 和 B 淋 巴 细

胞。T 淋巴细胞主要参与细胞免疫反应，B 淋巴细胞主要

参与体液免疫反应。多糖可通过影响淋巴细胞进而调节

免疫反应，主要体现在进行淋巴细胞增殖，分泌细胞因子

以及抗体等。淋巴细胞增殖被认为是细胞和体液免疫反

应的指标［33］。MEP 可激活初始辅助性 T 细胞（Th0）增殖

分 化 形 成 1 型 辅 助 性 T 细 胞（Th1）和 2 型 辅 助 性 T 细 胞

（Th2），然 后 进 一 步 激 活 B 细 胞 分 泌 免 疫 因 子 ，干 扰 素

（IFN）、白细胞介素-2（IL-2）、白细胞介素-4（IL-4），从而调

节 免 疫 反 应［34］（图 3）。 其 中 ，IL-2 是 T 细 胞 生 长 、增 殖 和

分化所必需的，而 IFN 连接先天性和适应性免疫反应，IL-

4 调 节 各 种 细 胞 功 能 ，包 括 T 细 胞 和 B 细 胞 增 殖 和 分 化 。

从 野 生 羊 肚 菌 中 提 取 水 溶 性 多 糖（MP），MP 主 要 由 D-

Man、D-Glc、D-Gal 和 L-Rha 组 成 ，Mw 为 3.974×103，与 其

他具有药用特性的多糖相比具有较高的 Mw。进一步研究

显示 MP 恢复了环磷酰胺处理小鼠的脾脏重量，增加了外

周 血 和 脾 脏 中 白 细 胞 和 淋 巴 细 胞 的 数 量 ，显 著 提 高 了 淋

巴细胞水平，尤其是 CD19 细胞水平，表明 MP 可能作为一

种可以促进淋巴细胞增殖的佐剂［2］。此外，Wen 等［35］使用

热水提取法从六妹羊肚菌中分离出含有 GlcNac、Gal、Glc

和 Man 的 新 型 多 糖（MSPW70-1）。 不 同 取 代 度（DS）的

MSPW70-1 硫酸化衍生物（MSPW70-M1、MSPW70-M2 和

MSPW70-M3）均 能 显 著 促 进 小 鼠 脾 脏 淋 巴 细 胞 的 增 殖 ，

在相同浓度下，DS 为 0.5 的 MSPW70-M1 对脾脏淋巴细胞

增 殖 的 效 力 最 高 ，增 殖 率 为 681.35%，是 MSPW70-1 的

1.36 倍。表明较低的硫酸化衍生物 DS 对于体外脾脏淋巴

细胞增殖更有效。

2.3　肠道免疫调控

肠 道 是 体 内 表 面 积 最 大 的 免 疫 器 官 ，可 参 与 免 疫 和

炎 症 反 应 ，这 主 要 是 由 于 肠 道 微 生 物 群 可 以 产 生 多 种 代

谢 产 物 ，比 如 短 链 脂 肪 酸（SCFA），可 以 通 过 肠 道 屏 障 并

与 宿 主 细 胞 相 互 作 用 ，进 而 影 响 免 疫 反 应［36］，产 生 的

SCFA 水平增加可以使肠道环境酸化，以保护其免受多种

致病菌的侵害，并且 SCFA 可以直接作用于免疫细胞［37］。

Huo 等［2］评估了从野生羊肚菌中提取的水溶性多糖（MP）

对未经处理和环磷酰胺（CP）处理的小鼠肠道微生物群的

影响。结果显示，与正常小鼠相比，用 MP 处理的小鼠表

现出较高的 SCFA 产生细菌的水平。此外，该研究团队［38］

还进一步探究了 MP 对小鼠肠道微生物群多样性和组成

的影响 ，发现 MP 处理增加了肠道操作分类单元（OTUs）

图 3　淋巴细胞的增殖机制

Figure 3　Mechanisms of lymphocyte enhancement
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的 数 量 和 多 样 性 ，而 且 在 MP 处 理 的 小 鼠 的 盲 肠 和 结 肠

中，产生 SCFA 的细菌的相对丰度均增加。类似的，从金

针菇中提取的 Mw 为 18.3 的吡喃糖（FVP2），其主要单糖是

Gal、Glc 和 Man。FVP2 可以显著增加盲肠内容物中丁酸

和 异 丁 酸 的 含 量 ，并 可 以 增 加 肠 道 中 产 生 丁 酸 盐 的 细 菌

数［39］。从杏鲍菇中分离出的以葡萄糖为主的新型均质多

糖 PEP，其具有 β型糖苷键，可以改变粪便微生物群的组

成并调节宿主的免疫反应［40］。

2.4　抑制氧化应激

氧化应激与异常免疫反应有关。根据氧化—炎症理

论，由于氧化剂是炎症因子，氧化剂的过量产生会引起炎

症反应，导致免疫细胞功能下降［4］。目前，多糖的抗氧化

机 理 主 要 包 括 以 下 方 面 ：通 过 调 节 氧 化 酶 活 性 有 效 清 除

自由基［41］，通过捕获脂质反应产生的自由基或与某些金

属离子螯合来抑制自由基的产生［42］，调节氧化应激介导

的 抗 氧 化 系 统 或 信 号 通 路 ，或 减 少 活 性 氧（ROS）的 产

生［43］，抑制诱导型一氧化氮合酶 mRNA 的表达。具体而

言，主要通过调节 NF-κB 信号通路和核因子 E2 相关因子

2（Nrf2）/Kelch 样 环 氧 氯 丙 烷 相 关 蛋 白 1（Keap1）/抗 氧 化

反应元件信号通路（ARE）表现出抗氧化活性（图 4）。在

正常生理条件下，Nrf2 与 Keap1 结合；外部刺激引发氧化

应激时，Nrf2 的降解减少并与 Keap1 解开，使其核转移并

激 活 ARE，进 而 上 调 谷 胱 甘 肽 过 氧 化 物 酶（GSH-Px）、过

氧化氢酶（CAT）、超氧化物歧化酶（SOD）等酶的含量，保

护 细 胞 免 受 氧 化 应 激 损 伤［44］。 此 外 ，NF-κB 信 号 通 路 在

氧化应激下被激活，IκB 激酶磷酸化促使 NF-κB 进入细胞

核，增强 IL-1、IL-6、IL-8、TNF-α 和 iNOS 的表达［31］。Meng

等［45］从羊肚菌中提取的胞外多糖 SO-01 可显著提升小鼠

各 器 官 中 SOD 和 GSH-Px 的 活 性 ，增 强 抗 氧 化 能 力。Xu

等［9］从尖顶羊肚菌中分离出 Mw 为 48.3 的多糖（NMCP-2），

由 Man、Glc、Gal 和 Xyl 组成，其可通过减少 ROS 的产生，提

高线粒体膜电位等途径防止过氧化氢（H2O2）诱导的氧化

应激。类似的，蛹虫草多糖 PSG-1 可通过调节 ROS 的产生

和细胞死亡来改善免疫功能障碍［46］。

3　结构与免疫调节活性的关系

MEP 的 免 疫 活 性 与 其 单 糖 组 成 、Mw、糖 苷 键 类 型 和

摩尔比以及链构象有关。首先，Mw 是影响多糖活性的关

键 因 素 ，而 最 佳 Mw 是 多 糖 表 现 出 最 强 生 物 活 性 的 基 础 ，

通常，Mw 大，表现出大分子体积和增加的跨膜抗性，不利

于 吸 收 和 利 用 ，影 响 生 物 活 性 的 发 挥 。 但 是 ，如 果 Mw 极

低，多糖就不能形成活性结构，从而降低了它们的生物活

性［47］。 Xiong 等［48］指 出 ，Mw 较 低 的 羊 肚 菌 多 糖 具 有 较 高

的 抗 氧 化 活 性 。 同 时 ，单 糖 组 成 也 是 影 响 多 糖 活 性 的 重

要因素。研究证明，MEP 的 Glc 含量越高，免疫活性和抗

氧化活性越高。Li 等［8］研究发现，采用亚临界水萃取的羊

肚 菌 多 糖（MSPSWE）的 免 疫 活 性 高 于 热 水 萃 取 提 取 的

（MSPHWE），这 可 能 与 其 较 高 的 Glc 含 量 和 较 高 的 硫 酸 盐

含 量 有 关 。 此 外 ，富 含 GlcNAc 的 羊 肚 菌 多 糖 MIPB70-1

具有较强的免疫调节活性［7］。糖苷键的类型和位置对多

糖的免疫调节活性也有影响。β型糖苷键的空间构型使

其 能 够 更 有 效 地 与 免 疫 细 胞 的 受 体 结 合 ，激 活 免 疫 反

应［49］。不同的连接位置（如 O-1 到 O-4 或 O-1 到 O-6）也会

影响多糖的折叠与结构，进而影响其生物活性，较高的分

支度通常会加强与免疫细胞受体的相互作用［50］。具体而

言 ，Wen 等［51］从 羊 肚 菌 中 分 离 出 两 种 多 糖 MIPB50-W 和

MIPB50-S-1，其 Mw 分 别 为 939.2 和 444.5。 MIPB50-W 的

主链为 α-（1→4）-D-Glc，在 O-6 位被 α-D-Glcp-（1→取代。

图 4　羊肚菌多糖的抗氧化机制

Figure 4　Antioxidant mechanism of MEP
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MIPB50-S-1 的 主 链 为 α -（1→4）-D-Glc，在 O-6 位 被 α -D-

Glcp-（1→6）- α -D-Glcp-（1→ 取 代 。 二 者 均 能 够 通 过

MAPK 和 NF-κB 信 号 通 路 增 强 巨 噬 细 胞 的 吞 噬 作 用 ，并

促进 IL-6、TNF-α 的分泌，但 MIPB50-S-1 的免疫调节活性

优于 MIPB50-W。

化 学 修 饰 也 是 改 善 多 糖 生 物 活 性 的 主 要 策 略 ，通 常

通 过 化 学 方 法 将 其 他 活 性 基 团 引 入 多 糖 链 ，常 见 的 修 饰

方式有硫酸化、羧甲基化、乙酰化、硒化等，是克服天然多

糖 水 溶 性 差、生 物 活 性 低 等 问 题 的 最 佳 方 法 。 硫 酸 化 多

糖，是一类羟基部分被硫酸基取代的多糖，其活性在很大

程度上取决于 DS。通常，当 DS 在 1.5~2.0 范围时，硫酸化

多 糖 的 生 物 活 性 最 好 。 羧 甲 基 化 是 将 羧 甲 基 引 入 多 糖

链 ，主 要 通 过 两 个 反 应 引 发 。 Li 等［52］制 备 了 羧 甲 基 化

（CFMP-1）和硫酸化（SFMP-1）的多糖，改性的多糖比原始

多糖表现出更高的抗炎活性和增强的免疫功能。羧甲基

化 的 羊 肚 菌 多 糖 还 具 有 更 强 的 降 胆 固 醇 活 性［53］。 同 样

的，Rizkyana 等［54］从平菇中提取多糖，硫酸化多糖（DS 为

1.83）表现出更好的抗凝和抗氧化活性。多糖乙酰化是用

乙 酰 基 取 代 多 糖 的 羟 基 的 方 法 ，乙 酰 化 提 高 了 多 糖 的 疏

水 性 ，从 而 提 高 了 它 与 非 极 性 分 子 相 互 作 用 的 能 力 。

Tang 等［55］对提取的 PMEP 进行乙酰化，DS 值为 0.40 的乙

酰衍生物比 PMEP 具有更高的抗氧化和抗增殖活性，表明

乙酰化是增强 PMEP 生物活性的有效途径。硒（Se）是人体

正常运作所必需的微量矿物质。它在维持健康的免疫系

统和保护细胞免受氧化应激方面发挥着至关重要的作用。

Qian 等［56］的研究表明，富硒处理显著改变了多糖的化学组

成、Mw 和糖链构型，显著增强 RAW 264.7 巨噬细胞的吞噬

作用，并通过激活 TLR4-TRAF6-MAPKs-NF-κB 级联信号

通路激活其免疫反应，最终发挥免疫调节功能。

4　结论与展望

该 研 究 全 面 总 结 了 羊 肚 菌 多 糖 的 提 取 与 纯 化 方 法 、

免 疫 调 节 活 性 及 机 制、构 效 关 系 。 通 过 对 比 不 同 提 取 工

艺 ，发 现 提 取 方 法 显 著 影 响 羊 肚 菌 多 糖 的 结 构 及 其 生 物

活 性 。 探 讨 了 免 疫 调 节 作 用 发 挥 的 机 制 ，包 括 靶 向 巨 噬

细胞激发信号通路、促进淋巴细胞分化，调节肠道菌群以

及抑制氧化应激等以及相对分子质量、单糖组成、糖苷键

类 型 以 及 结 构 修 饰 对 免 疫 调 节 活 性 的 影 响 。 然 而 ，目 前

的研究仍然面临一些挑战：①  羊肚菌产量少，成本高，深

入 研 究 高 效 且 不 破 坏 其 结 构 的 多 糖 提 取 方 法 很 有 必 要 ；

②  尽管已有研究揭示了羊肚菌多糖的免疫调节作用，但

由 于 多 糖 的 复 杂 性 ，有 关 多 糖 分 子 的 高 级 结 构 研 究 比 较

少，其活性与具体高级结构的关系尚不明确，这类空缺为

未来研究指明了一个重要的领域；③  目前有关 MEP 的免

疫 调 节 活 性 的 研 究 ，主 要 集 中 在 对 巨 噬 细 胞 和 淋 巴 细 胞

的影响上，然而关于其他重要免疫细胞（例如树突状细胞

和自然杀伤细胞）的研究很少。
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