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基于挥发性盐基氮的油坛肉货架期预测

何 丽 1 但 利 1 刁尚鹏 2 邢亚阁 1 杨路林 1 刘艾明 1
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摘要：［目的］建立基于挥发性盐基氮（TVB-N）的油坛肉货架期预测模型。［方法］测定 4，25，37 ℃贮藏条件下油坛肉的

水分活度、pH 值、TVB-N 值、硫代巴比妥酸（TBARS 值）、过氧化值（POV 值）及感官品质变化，结合一级动力学模型与

Arrhenius 方程进行综合分析。［结果］贮藏温度显著影响油坛肉品质劣变速率，TVB-N 值与贮藏时间呈强相关性（R2=
0.992），选定其为关键指标构建货架期预测模型。结合 Arrhenius 方程（R2=0.956，Ea=19 809.28 kJ/mol），预测油坛肉

在 4，25，37 ℃下的货架期分别为 327，178，130 d，预测值与实测值相对误差分别为±2.9%，±8.1%，±1.8%。［结论］基于

TVB-N 的模型可精准预测不同温度下油坛肉货架期，且填补了传统腌腊肉制品货架期定量预测的空白。
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Shelf-life prediction of oil-preserved meat based on volatile basic nitrogen
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Abstract: ［［Objective］］ To establish a shelf-life prediction model for oil-preserved meat based on total volatile basic nitrogen (TVB-N). 

［［Methods］］ Under the storage conditions of 4, 25, and 37 ℃ , changes in the following parameters of oil-preserved meat are determined: 

water activity, pH value, TVB-N value, thiobarbituric acid (TBARS value), peroxide value (POV value), and sensory quality. A 

comprehensive analysis is conducted using the first-order kinetic model and the Arrhenius equation. ［［Results］］ Storage temperature 

significantly affects the quality deterioration rate of oil-preserved meat. The TVB-N value is closely correlated with storage time (R2=
0.992) and is therefore selected as the key indicator to construct the shelf-life prediction model. Combined with the Arrhenius equation (R2=
0.956, Ea=19 809.28 kJ/mol), the predicted shelf-lives of oil-preserved meat at 4, 25, and 37 ℃ are 327, 178, and 130 days, respectively. 

The relative errors between the predicted values and the measured values are ±2.9%, ±8.1%, and ±1.8%, respectively. ［［Conclusion］］ The 

TVB-N-based model can accurately predict the shelf-lives of oil-preserved meat at different temperatures, filling the gap in the quantitative 

shelf-life prediction of traditional cured meat products.
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油坛肉以其独特风味深受四川凉山民众喜爱［1］。然

而，传统家庭式制作工艺受限于简陋的贮藏条件和包装

技术，油坛肉在保存过程中品质难以保证，不能满足市场

需求和消费者期望［2-3］。这些家庭作坊多采用简易包装，

缺乏有效密封与保鲜措施，无法阻隔氧气接触，产品易受

微生物侵袭，加速氧化和变质［4］。

工业化生产可确保原料精选、标准化流程管理以及

科学包装和贮藏。特别是巴氏杀菌结合真空包装技术，

能有效隔绝氧气和微生物，延长保鲜期，同时保留独特风

味［3］。然而，工业化生产环境下油坛肉的货架期仍受温

度、湿度等多因素协同影响，其中温度波动对脂肪氧化及

微生物增殖的促进作用尤为显著。为量化温度对品质衰
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变的影响规律，亟需通过加速破坏性试验建立动力学模

型，进而构建基于实际贮藏温度的货架期预测体系。目

前，动力学模型主要基于化学动力学和微生物生长动力

学的原理构建。化学动力学模型侧重于利用理化指标和

菌落总数来建立预测模型，而微生物生长动力学模型侧

重于利用菌落总数及其特定腐败菌来构建。张德福等［5］

以 4 种不同处理方式的三文鱼为研究对象，用 Pearson 相

关系数分析和 Arrhenius 方程，成功构建了烟熏三文鱼贮

藏温度与品质变化（以菌落总数、挥发性盐基氮和组胺含

量 为 指 标）之 间 的 动 力 学 方 程 。 李 彦 等［6］基 于 一 级

Gompertz 修正模型和二级 Belehradek 模型，建立了红烧

卤牛肉的货架期预测模型，并进一步预测不同贮藏温度

下的货架期数值。李廷妮等［7］采用 Gompertz 方程建立了

贮藏时间和腐败菌群变化关系的一级和二级模型，最后

对比预测值和实际值之间的差距以验证模型的可靠性。

目前，有关其他肉制品在不同贮藏温度下的品质变化及

货架期预测已有较多报道［8-10］，但对于油坛肉这一特色

腌腊肉制品，尤其是真空包装成品在不同温度条件下的

货架期预测模型研究，仍是一个亟待填补的空白。

研究拟通过分析油坛肉成品在不同温度下的品质变

化和理化特性，揭示各指标的变化规律和敏感程度，进而

确定敏感指标并建立货架期预测模型。利用一级动力学

方程与 Arrhenius 方程，共同构建油坛肉在贮藏过程中的

动力学模型［11-13］，并对其在各贮藏条件下的货架期进行

预测，旨在为油坛肉及其他肉制品的货架期预测模型的

构建提供依据。

1　材料与方法

1.1　材料与仪器

真空包装油坛肉：德昌县茂源长（童耳朵）食品有限

责任公司；

水分活度计：LabMaster-aw 型，瑞士 Novasia公司；

显数式 pH 计：PHS-320 型，成都世纪方舟科技有限

公司；

自动凯氏定氮仪：K9840 型，济南海能仪器股份有限

公司；

低速台式离心机：TD-5M 型，四川蜀科仪器有限

公司；

全波长酶标仪：K6600A 型，北京凯奥科技有限公司；

电热恒温水浴锅：DK-98-11 型，天津市泰斯特仪器有

限公司。

1.2　试验方法

1.2.1　原料处理及试验条件　将真空密封包装的油坛肉

分别于 4，25，37 ℃进行贮藏，其中，37 ℃为破坏试验、25 ℃
为常温试验，4 ℃为对照试验，定期 20 d 取样检测，并对水

分分布、pH 值、挥发性盐基氮（TVB-N）、硫代巴比妥酸

（TBARS）、过氧化值（POV）和感官评价进行检测，直至

100 d 取样完毕。为减少取样部位带来的差异，各指标测

定取用肥肉部位的油坛肉样品进行检测。

1.2.2　水分活度测定　使用水分活度计标准溶液 0.50~

0.97 校准。称取 1.00 g 切碎成约 1 mm 粒径的油坛肉颗

粒，迅速放入样品盒中，于平衡仓中静置 30 min，转移至

测试仓，封闭仓门进行检测，同一样品重复测量 3 次。

1.2.3　pH 值测定　参照 GB 5009.237—2016。

1.2.4　TVB-N 值测定　参照 GB 5009.228—2016。

1.2.5　TBARS 值测定　参照张雪梅［14］的方法并略加修

改。取 10 g 绞碎搅匀的样品放入 250 mL 锥形瓶中，加入

50 mL 三氯乙酸（含 0.1% 乙二胺四乙酸）的 7.5% 水溶液，

加入 3 mL TBARS 溶液，沸水浴 20 min，冷却至室温。取

3 mL 上清液与等量的氯仿混合，4 000 r/min 离心 5 min。

测定 532，600 nm 处吸光值，按式（1）计算 TBARS 值。

A= ( A 532 nm - A 600 nm )× 4.68 × 1
m× 0.1， （1）

式中：

A——TBARS 值，mg/kg；

m——油坛肉质量，g；

A532 nm——532 nm 处吸光度；

A600 nm——600 nm 处吸光度。

1.2.6　POV 值测定　参照 GB 5009.227—2016。

1.2.7　感官评价测定　感官评价小组由 20 名经阈值测试

和一致性考核的专家型评价员构成（男 12 女 8），均通过为

期 2 周的油坛肉专项培训（包括工艺认知、缺陷风味识别

及评分表校准）。评价过程中采用双盲法，每批次样品重

复评价 3 次，按表 1 对油坛肉风味、口感、组织状态和外观

感官指标进行评定。

1.2.8　油坛肉贮藏货架期预测模型的建立　食物贮藏过

程中，大部分与食物品质紧密相关的变化均按照零级或

一级动力学方程的模式发展［15-18］。基于此，将恒定温度

下测得的 TVB-N 值，通过特定的动力学方程进行拟合处

理，具体数学表达式如式（2）和式（3）所示。

零级动力学方程：

A= A 0 - kt， （2）

一级动力学方程：

A= A 0 exp (kt )， （3）

式中：

A0、A——TVB-N 的初始值和 t时刻值，mg/kg；

k——反应速率常数，mg/（kg⋅d）；

t——贮藏时间，d。

Arrhenius 方程定量描述了化学反应速率常数 k 与热

力学温度 T 之间的关联。

k= k0 exp ( - E a

RT )， （4）
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式中：

k0——前因子；

Ea——反应活化能，kJ/mol；

T——绝对温度，K；

R——气体常数，8.314 4 J/（mol·K）。

获取 3 个不同温度下的速率常数后，对 Arrhenius 方

程取自然对数，可得：

ln (k)= ln (k0)- E a

RT
。 （5）

因此，通过将一级动力学方程与 Arrhenius 方程相结

合，只要明确 TVB-N 的终点限值及目标贮藏温度，即可直

接 计 算 理 论 货 架 期［15］。 将 计 算 出 的 TVB-N 值 的

Arrhenius 方程中的活化能 Ea和频率因子 k0代入式（5），可

得出油坛肉货架期模型方程：

SL= ln (TVB )- ln (TVB 0 )

18.634 × e
-2 382.527

T

。 （6）

1.2.9　数据分析　所有试验均重复 3 次取平均值，采用

Excel 2022 软件计算平均值和标准偏差，用 SPSS 22.0 软

件进行差异显著性分析（显著性水平为 P<0.05）。此外，

基于 Pearson 相关系数进行相关性分析，并利用 Origin 8.5

软件作图。试验结果以平均值±标准偏差表示。

2　结果与分析

2.1　贮藏期间油坛肉水分活度变化

水分活度反映了食品中水分的存在状态［16-18］。由

图 1 可知，4 ℃贮藏条件下，油坛肉水分活度从初始 0.806

升至 0.824 后逐渐降至 0.682，这可能与其高脂肪含量和真

空包装阻氧性有关［19］。相同贮藏时间点，不同温度对水

分活度的影响存在显著差异，贮藏初期（第 20 天），4 ℃下

水分活度为 0.824，而 25，37 ℃下分别为 0.804，0.769，表明

低温有助于维持较高的水分活度，而高温则加速了水分

散失［17］。贮藏后期（第 60 天），4 ℃下的水分活度保持在

0.682，25 ℃下降至 0.855，而 37 ℃下则快速下降至 0.658。

这表明高温条件下，水分活度的下降更为显著，与剧烈的

氧化反应和微生物活动有关［15］。与王岸娜等［20］的研究结

果相似。表明无论是在传统腊肉还是新型肉制品中，温

度对水分活度的影响具有一定的共性。然而，油坛肉的

水分活度终值低于 3D 打印猪肉脯的［20］，表明油坛肉中脂

质氧化对水分迁移的抑制作用更强。此外，与李廷妮等［7］

对酱卤鸭肉的气调包装研究相比，其水分活度在 4 ℃下仅

下降了 0.1，而试验的水分活度降幅达 0.14，进一步验证了

真空包装结合低温对水分活度调控的高效性。25，37 ℃
贮藏初期因微生物代谢及酶促反应消耗自由水，水分活

度分别降至 0.804 和 0.769；中期因结合水生成出现短暂回

升到达 0.855，但 60 d 后随水分消耗和氧化反应加剧，水分

活度快速下降，其中 37 ℃高温促使微生物活动与化学反

应最剧烈，终值降至 0.658。升高温度显著加速了水分活

度的下降进程，体现为 4 ℃<25 ℃<37 ℃的劣变梯度。

2.2　贮藏期间油坛肉 pH值变化

新鲜肉类的 pH 值维持在 5.4~5.8［21-22］。油炸后因高

温烹饪导致肉中的蛋白质分解，产生了氨和胺类等碱性

物质，使其 pH 值显著上升［23-25］。

由图 2 可知，贮藏第 20 天，4 ℃下的 pH 值最低，37 ℃
下的最高，表明低温抑制了微生物活动，导致 pH 值下降，

而高温促进了微生物发酵，导致 pH 值上升［24］。与王素

等［26］的结论相反，这是因为油坛肉腌制过程中少量磷酸

盐残留导致初始 pH 值偏高。贮藏第 80 天，4 ℃下的 pH 值

升至 6.58，25 ℃下升至 6.49，37 ℃下降至 6.13，这是微生物

活动减弱、酸性物质减少及碱性成分累积所致，同时氧气

渗入或脂肪氧化也导致 pH 值上升［25］。而高温条件下 pH

表 1　油坛肉感官评分表

Table 1　Sensory scoring table for oil-preserved meat

风味（30 分）

香气浓郁、无异味（30~26）

香气较浓、无异味（25~21）

香气较淡、有异味（20~15）

无香味、严重的酸腐味（<15）

口感（40 分）

软糯可口、不粘牙（40~31）

略软、不粘牙（30~21）

略软、粘牙（20~11）

过软、粘牙（<10）

组织状态（20 分）

组织紧实、有弹性（20~16）

组织较紧实、有弹性（15~11）

组织变软、无弹性（10~5）

组织变烂、有霉斑（<5）

外观（10 分）

外观清晰、完整（10~8）

外观有少许汁液、完整（7~5）

外观有汁液渗出、表皮少许腐烂、肉质少许变

色（4~2）

外观大量汁液渗出、表皮腐烂、肉质变色（<2）

图 1　不同贮藏温度下油坛肉的水分活度值

Figure 1　Water activity values of oil-preserved meat at 

different storage temperatures
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值继续下降，可能是油坛肉中的脂肪、蛋白质等成分发生

氧化等化学反应［22］。脂肪氧化产生的某些醛类、酮类等

化合物进一步与蛋白质等成分发生反应，生成酸性物质，

使 pH 值降低［23］。而在 37 ℃贮藏后期，pH 值回升至 6.40，

与孙莹等［27］的研究类似，均归因于高温下蛋白质分解产

氨。相比之下，崔跃慧等［28］的调理猪肉饼的 pH 值比较稳

定，未出现显著波动，表明不同肉制品的 pH 值变化机制

存在差异，油坛肉的脂肪—蛋白质基质可能更易受碱性

代谢物影响。

2.3　贮藏期间油坛肉 TVB-N值变化

TVB-N 是蛋白质腐败分解产物（氨/胺类），其含量直

接反映肉品新鲜度［29］。由图 3 可知，贮藏期间，TVB-N 随

温度升高显著累积，与 25，37 ℃相比，4 ℃下油坛肉 TVB-

N 值变化极为显著（P<0.01），终值为 10.35 mg/100 g，而

25，37 ℃下分别为 14.75，16.95 mg/100 g。这主要是因为

低温降低了蛋白质的分解速率，从而减少了 TVB-N 的生

成［29］。油坛肉 TVB-N 值在高温 37 ℃下从 7.23 mg/100 g

激增至 16.95 mg/100 g，显著高于夏南等［30］的，可能是油

坛肉的高脂肪含量延缓了微生物初期增殖，但后期高温

加速了蛋白质腐败。黎财慧等［31］的低温熟制鸽子的

TVB-N 增长速率显著高于试验的，可能是油坛肉通过高

盐、高脂、高温加工及真空包装多重屏障，延缓了蛋白质

的腐败进程。

贮藏第 20 天，4，25，37 ℃下 TVB-N 值分别为 7.90，

8.13，8.48 mg/100 g，表明在贮藏初期，温度对 TVB-N 值影

响尚不显著［29］。贮藏第 40 天，各温度组的 TVB-N 值差异

开始显现，4，25，37 ℃下分别为 8.35，9.51，10.47 mg/100 g，

表明随着贮藏时间的延长，温度对 TVB-N 生成的促进作

用逐渐增强。贮藏第 80 天，4，25，37 ℃下的 TVB-N 值分

别为 9.75，12.73，13.75 mg/100 g。表明温度是影响油坛

肉 TVB-N 值变化的关键因素，低温环境能够显著减缓

TVB-N 的生成速率，维持肉品的新鲜度；而高温则加速了

这一过程，导致肉品品质快速劣化［31］。

2.4　贮藏期间油坛肉 TBARS值变化

TBARS 值反映脂质氧化程度受包装阻氧性及贮藏温

度共同影响。透气性差的包装会增加氧气渗透，从而加

速脂肪的氧化分解。由图 4 可知，贮藏时间越长，3 种温度

下贮藏的油坛肉的 TBARS 不同程度上升，表明脂肪氧化

的程度逐渐加深［32］。贮藏第 20 天，4，25，37 ℃下油坛肉

TBARS 值 分 别 为 0.067，0.065，0.073 mg/kg，25 ℃ 下

TBARS 值略低于 4 ℃下的，这是由于 25 ℃下微生物和酶

活性较低，尚未达到促进脂质氧化的高峰［31］。同时，真空

包装在 25 ℃下仍能有效抑制氧气渗透，减缓脂质氧化反

应。从第 20 天开始，25 ℃下的 TBARS 值逐渐上升，在第

40 天达到 0.069 mg/kg，但仍低于 4 ℃ 下的。这是由于

25 ℃下微生物的代谢产物具有抗氧化作用，从而减缓了

脂质氧化的速率［19］。贮藏第 60 天，25，4 ℃下的 TBARS

值分别为 0.092，0.078 mg/kg，表明随着贮藏时间的延长，

25 ℃下脂质氧化反应逐渐加剧，超过了 4 ℃下的。这是由

于 25 ℃下微生物和酶活性逐渐增强，促进了脂质氧化

图 2　不同贮藏温度下油坛肉的 pH 值

Figure 2　pH values of oil-preserved meat under different 

storage temperatures

图 3　不同贮藏温度下油坛肉的 TVB-N 值

Figure 3　TVB-N values of oil-preserved meat at different 

storage temperatures

图 4　不同贮藏温度下油坛肉的 TBARS 值

Figure 4　TBARS values of oil-preserved meat at different 

storage temperatures
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反应［25］。

37 ℃下，脂肪分子活化能降低且微生物/酶活性增强，

TBARS 值 从 0.060 mg/kg 显 著 升 至 0.127 mg/kg（P<
0.05），脂质氧化速率显著升高，但低于黄静等［33］的增幅，

表明真空包装可以有效抑制氧气渗透，但高温仍可加速

脂肪氧化。25 ℃下脂肪氧化速率介于 4 ℃和 37 ℃之间，

终值为 0.113 mg/kg；而在 4 ℃下虽然能抑制氧化，TBARS

值仍从 0.060 mg/kg 缓增至 0.094 mg/kg。通过调控微生

物增殖与酶促反应强度，引起脂肪氧化速率差异：高温促

进初期氧化启动与后期持续分解，而低温仅延缓非完全

抑制氧化进程。谢进等［34］研究发现，即食烧鹅胸肉的

TBARS 值也增长迅速，说明高温下加速了脂肪氧化。

2.5　贮藏期间油坛肉 POV值变化

POV 值是衡量油脂氧化程度的关键指标，直接反映

了油脂中过氧化物的含量［35］。POV 值越高油脂氧化及酸

败（哈败味）越显著，贮藏期间，光、热、氧气及酶促反应共

同导致油脂氧化生成过氧化物，并进一步分解为醛酮类

物质［36-37］。

由图 5 可知，随着贮藏时间的延长，POV 值持续上升，

且温度越高升幅越大。油坛肉在 4 ℃下贮藏 100 d，POV

值仅从 0.001 07 mg/100 g增加至 0.024 2 mg/100 g；而在 25，

37 ℃下时，POV值分别高达 0.080 90，0.093 30 mg/100 g，与

4 ℃下的相比，差异均具有统计学意义（P<0.05）。37 ℃
下，通过加速油脂分子运动、促进氧接触及增强微生物/酶

活性，使氧化与水解反应加剧。因此，在此温度下贮藏的

油 坛 肉 ，其 POV 值 由 0.018 30 mg/100 g 激 增 至

0.093 30 mg/100 g。而在 4 ℃下其低温显著抑制了氧化进

程 ，同 期 POV 值 仅 从 0.014 60 mg/100 g 缓 增 至

0.024 20 mg/100 g，表明温度对油脂稳定性具有决定性影

响。这与胡力等［38］的 POV 变化相比，试验中 POV 终值更

高，可能与油坛肉中不饱和脂肪酸比例较高有关。贮藏

第 20 天，4，25，37 ℃下 POV 值分别为 0.003 85，0.006 54，

0.007 64 mg/100 g。贮藏初期，温度对 POV 值影响不显

著，但随着贮藏时间的延长，不同温度下的 POV 值差异逐

渐显现［38］。贮藏第 80 天，4，25，37 ℃下的 POV 值分别为

0.013 30，0.054 13，0.059 17 mg/100 g，说明随着贮藏时间

的延长，温度对 POV 值上升的促进作用逐渐增强［35］。

2.6　感官评分

由图 6 可知，油坛肉的感官评分均呈下降趋势，且温

度越高，下降速率越快。贮藏第 20 天，4，25，37 ℃下的感

官评分分别为 87.6，87.5，85.1，差异不显著，表明在贮藏初

期，不同温度对感官品质的影响较小［39］。贮藏第 60 天，4，

25，37 ℃下的感官评分分别进一步降至 82.1，81.1，75.3，

差异显著（P<0.05），表明相同的贮藏时间下，温度越高，

感官品质的劣化程度越严重［40］。特别是 37 ℃下，油坛肉

的风味、口感、组织状态和外观均出现了显著劣化，而 4，

25 ℃下的劣化程度相对较轻。表明低温贮藏能有效延缓

油坛肉品质下降，保持产品的贮藏性。

2.7　相关性分析

根据各指标的具体数据，对指标间的相关性进行分

析，结果见表 2~表 4。由表 2 可知，4 ℃下，水分活度与 pH

值呈显著负相关（P<0.05），与 TBARS 和 TVB-N 值呈极

图 5　不同贮藏温度下油坛肉的 POV

Figure 5　POVs of oil-preserved meat at different storage 

temperatures

图 6　不同贮藏温度下油坛肉的感官评分

Figure 6　Sensory scores of oil-preserved meat at different storage temperatures
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显 著 负 相 关（P<0.01），与 感 官 评 分 呈 极 显 著 正 相 关

（P<0.01）。

由表 3 可知，随着贮藏时间的延长，肉制品的 POV、

TBARS 值和感官评分均显著降低；POV 值与 TBARS 和

TVB-N 值呈极显著正相关（P<0.01），感官评分与 POV、

TBARS 和 TVB-N 值呈极显著负相关（P<0.01）。

由表 4 可知，随着贮藏时间的延长，油坛肉中 POV、

TBARS 和 TVB-N 值均不断上升，且水分活度与  POV、

TBARS、TVB-N 值呈极显著负相关（P<0.01），而感官评

分也不断下降，感官评分与水分活度呈极显著正相关

（P<0.01）。POV 值与 TBARS 值和 TVB-N 值呈极显著正

相关（P<0.01），与感官评分呈极显著负相关（P<0.01）。

基于表 2~表 4 的 Pearson 相关性分析数据，相较其他

指标，TVB-N 值在温度梯度（4~37 ℃）中表现出一致性高、

敏感性强的特性，且与感官劣化直接关联。因此，选定

TVB-N 值作为油坛肉货架期预测的核心指标。

2.8　不同贮藏温度下油坛肉货架期预测模型的建立

2.8.1　油坛肉品质变化动力学分析　将不同贮藏温度下

的试验数据代入式（2）和式（3），计算出油坛肉 TVB-N 值

在不同级别下的反应速率常数 k，以及对应的线性回归模

型的决定系数 R2，具体参数见表 5。

由表 5 可知，油坛肉 TVB-N 值的一级反应相关系数

R2均＞0.9，整体均比零级反应的大，表明一级反应线性关

系优良。因此，选用一级动力学方程作为 TVB-N 值的能

级方程。

2.8.2　不同贮藏温度下油坛肉 Arrhenius 方程的确定　基

于不同贮藏温度下油坛肉在不同反应级数下的速率常数

k，并结合 Arrhenius 方程，利用货架期终点时的指标值与

指标初始值，对不同温度下的货架期进行预测。通过表 5

中的动力学方程中的 k 值和贮藏温度，计算 lnk 与 1/T 的

值，并使用 Arrhenius 方程在不同贮藏温度下进行线性回

归拟合，结果如图 7 所示。

由图 7 可知，线性方程表达为 y=2.925-2 382.527x，

对应的-Ea/R 值为-2 382.527，相关系数 R2为 0.956，表明

该 方 程 具 有 较 高 的 拟 合 度 。 回 归 直 线 的 斜 率 为

-2 382.527，通过此线性方程可以计算出 TVB-N 变化的

活化能 Ea 为 19 809.28 kJ/mol，而速率常数（k0）为 18.634。

将 k0值代入式（3）后，得到 Arrhenius方程：

k= 18.634 × e- 2 382.527
T 。 （7）

表 3　25 ℃下油坛肉各指标的 Pearson相关系数†

Table 3　Pearson correlation coefficients of various 

parameters of oil-preserved meat at 25 ℃

指标

水分活度

pH 值

POV 值

TBARS 值

TVB-N 值

感官评分

水分活度

1.000

0.026

-0.804**

-0.843**

-0.770**

0.793**

pH 值

-
1.000

0.224

-0.079

0.081

0.010

POV 值

-
-

1.000

0.911**

0.969**

-0.915**

TBARS 值

-
-
-

1.000

0.947**

-0.973**

TVB-N 值

-
-
-
-

1.000

-0.970**

† *在 0.01 级别（双尾）相关性显著；**在 0.05 级别（双尾）相

关性显著。

表 4　37 ℃下油坛肉各指标的 Pearson相关系数†

Table 4　Pearson correlation coefficients of various 

parameters of oil-preserved meat at 37 ℃

指标

水分活度

pH 值

POV 值

TBARS 值

TVB-N 值

感官评分

水分活度

1.000

-0.272

-0.850**

-0.856**

-0.842**

0.888**

pH 值

-
1.000

0.577*

0.264

0.325

-0.308

POV 值

-
-

1.000

0.907**

0.941**

-0.927**

TBARS 值

-
-
-

1.000

0.969**

-0.983**

TVB-N 值

-
-
-
-

1.000

-0.963**

† *在 0.01 级别（双尾）相关性显著；**在 0.05 级别（双尾）相

关性显著。

表 5　油坛肉品质变化动力学参数

Table 5　Kinetic parameters of quality changes in oil-

preserved meat

反应

级数

零级

一级

贮藏温

度/K

277.15

298.15

310.15

277.15

298.15

310.15

动力学方程

y=0.028 83t+7.378 9

y=0.072 65t+6.883 4

y=0.091 20t+6.994 8

y=7.431 25exp（0.003 30t）

y=7.137 66exp（0.007 15t）

y=7.445 87exp（0.008 04t）

k值

0.028 83

0.072 65

0.091 20

0.003 30

0.007 15

0.008 04

R2

0.983

0.953

0.978

0.992

0.984

0.992

表 2　4 ℃下油坛肉各指标的 Pearson相关系数†

Table 2　Pearson correlation coefficients of various 

parameters of oil-preserved meat at 4 ℃

指标

水分活度

pH 值

POV 值

TBARS 值

TVB-N 值

感官评分

水分活度

1.000

-0.515*

-0.449

-0.925**

-0.951**

0.957**

pH 值

-
1.000

0.511*

0.426

0.456

-0.540*

POV 值

-
-

1.000

0.460

0.483*

-0.494*

TBARS 值

-
-
-

1.000

0.957**

-0.959**

TVB-N 值

-
-
-
-

1.000

-0.983**

† *在 0.05 级别（双尾）相关性显著；**在 0.01 级别（双尾）相

关性显著。
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2.9　油坛肉货架期预测模型的建立

根据 Q/PLGK 002S—2019 腌腊肉标准要求，结合贮

藏期试验结果，设定油坛肉的 TVB-N 值货架期终点限值

为 22 mg/100 g，代入式（8），可得到以 TVB-N 值为关键指

标的货架期预测模型：

SL= ln ( 22/TVB 0 )

18.634 × e- 2 382.527
T

。 （8）

通过式（8）可知，当已知油坛肉初始和货架期终点品

质指标值，就可以预测油坛肉在某一贮藏温度下的货架

期；当已知油坛肉初始的品质指标值和贮藏温度，可求出

该温度下油坛肉在某一时间的 TVB-N 值。

2.10　油坛肉货架期预测模型的验证

为了验证油坛肉 TVB-N 值预测模型，评估在 4，25，

37 ℃下，油坛肉贮藏第 60，80，100 天的 TVB-N 预测值与

实测值之间的对比情况，结果见表 6。

由表 6 可知，试验所构建的货架期预测模型在 4，25，

37 ℃ 下 ，TVB-N 预 测 值 与 实 测 值 的 相 对 误 差 分 别 为

±2.9%，±8.1%，±1.8%，整体误差控制在 ±8.1% 范围

内。尤其在高温（37 ℃）和低温（4 ℃）极端条件下，模型表

现出更高的预测精度（误差<±3%）。表明该模型能够

精准量化 4~37 ℃温度区间内真空包装油坛肉的 TVB-N

值动态变化，且对温度梯度具有强适应性。结合货架期

终点阈值，模型预测 4，25，37 ℃下的货架期分别为 327，

178，130 d，与实测值高度吻合。因此，该模型不仅适用

于宽温域（4~37 ℃）贮藏条件的货架期预测，还可为冷链

中断或高温暴露等实际场景下的品质风险评估提供可

靠依据。

3　结论

在 4，25，37 ℃贮藏条件下，油坛肉的挥发性盐基氮含

量、硫代巴比妥酸含量及过氧化值均随贮藏时间的延长

显 著 上 升（P<0.05），感 官 评 分 则 呈 同 步 下 降 趋 势 。

Pearson 相关性分析显示，挥发性盐基氮与贮藏时间、温度

及感官评分均呈极显著关联，其动态变化规律符合一级

动力学模型，拟合优度 R2=0.992。利用挥发性盐基氮构

建的 Arrhenius 曲线展现出了高度的回归相关性，其 R2 值

达 0.956。所建立的预测模型（7）对挥发性盐基氮含量的

预测较为准确，相对误差保持在±8.1% 以内。因此，该模

型在预测 4~37 ℃贮藏条件下油坛肉挥发性盐基氮含量时

具有较高准确性和可靠性。依据模型（8）的预测，油坛肉

在 4，25，37 ℃下的货架期预计分别为 327，178，130 d。尽

管该研究明确挥发性盐基氮在油坛肉货架期预测的核心

价值，但仍有不足。温度仅设 4，25，37 ℃，未覆盖流通极

端或波动温度，且未整合水分活度、包装等多因子协同影

响。后续可补充过渡温度、变温试验，纳入多环境因子建

立耦合模型；借助组学技术解析作用机制，跨批次工艺验

证模型，提升预测精度与行业适配性，完善腌腊肉货架期

管控体系  。
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