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基于改进 LSSVM 和 YOLOv12的番茄加工
生产线品质检测方法

刘 军 1 曹小平 1 王瑞琴 2 李 敏 3

（1. 重庆科创职业学院，重庆   402160； 2. 重庆理工大学，重庆   401135； 3. 四川农业大学，四川  雅安   625014）

摘要：［目的］提高自动化生产线中番茄品质检测的准确性与效率，解决传统检测依赖人工、精度低、效率差的问题。［方

法］基于番茄自动化生产线品质检测系统，构建高光谱与机器视觉融合的内外品质检测系统。高光谱检测数据经预处

理后，输入改进最小二乘支持向量机 LSSVM 模型检测番茄可溶性固形物和硬度，完成内部品质检测。机器视觉采集

数据预处理后，输入改进 YOLOv12 模型检测外部缺陷，并计算番茄尺寸与果形指数，实现外部品质检测。并通过试验

验证方法的优越性。［结果］内部品质检测方法对可溶性固形物、硬度预测决定系数（R2）分别为 0.965 和 0.975，均方根误

差（RMSE）分别为 0.082 °Bx 和 0.061 N。改进 YOLOv12 模型缺陷检测平均精度均值为 99.20%，检测速度>100 帧/s，

综合性能优于单一检测和现有方法。［结论］该融合检测系统可实现番茄内外品质同步、无损、高效检测，满足生产线

需求。
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Abstract: ［［Objective］］ To improve the accuracy and efficiency of tomato quality inspection in automated production lines, and solve the 

problems of traditional inspection, such as reliance on manual labor, low precision, and poor efficiency. ［［Methods］］ Based on the quality 

inspection system of the tomato automated production line, an integrated internal and external quality inspection system is developed by 

combining hyperspectral imaging and machine vision technologies. After preprocessing the hyperspectral detection data, an improved least 

squares support vector machine (LSSVM) model is employed to detect the soluble solids content and hardness of tomatoes, thereby 

completing internal quality inspection. For external quality inspection, the collected machine vision data are preprocessed, and an improved 

YOLOv12 model is utilized to detect external defects. Additionally, the size and fruit shape index of tomatoes are calculated. The superiority 

of the method is validated through experimental testing. ［［Results］］ The internal quality inspection method demonstrates high predictive 

accuracy, with determination coefficients (R2) of 0.965 for total soluble solids and 0.975 for hardness, and root mean square errors (RMSE) 

of 0.082 ° Bx and 0.061 N, respectively. The improved YOLOv12 model achieves an average defect detection accuracy of 99.20% and a 

detection speed exceeding 100 frames/s. The overall performance of this integrated system is superior to that of single-detection approaches 

and existing methods. ［［Conclusion］］ This integrated detection system enables synchronous, non-destructive, and efficient detection of both 
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internal and external quality of tomatoes, effectively meeting the requirements of automated production lines.

Keywords: automated production line; tomato quality inspection; hyperspectral; machine vision; least squares support vector machine; 

YOLOv12 model

番茄作为全球消耗量较大的食品之一，其品质直接

决定市场价值，而自动化生产线是实现番茄规模化加工、

保障供应链效率的核心环节［1］。目前，自动化生产线中的

番茄品质检测高度依赖人工筛选，检测效率难以匹配高

速生产线节奏，易导致漏检和误检等问题［2］。随着智能检

测技术的发展，高光谱成像技术凭借其光谱指纹特性，可

无损获取物体内部化学组分信息，为番茄内部品质的精

准检测提供了技术支撑。机器视觉技术则具备高速图像

处理能力，能快速捕捉物体外部形态与缺陷特征，在外部

品质检测中优势显著［3-4］。将二者融合，有望突破单一技

术局限，实现番茄内外品质的一体化、高精度、高效检测。

因此，对融合方法进行研究具有一定的实际意义［5］。

目前，国内外对基于番茄的自动化生产线品质检测

系统进行了深入研究，主要集中在单一机器视觉技术、高

光谱技术和初步融合技术［6-8］等方面。康明月等［9］针对

番茄内部品质检测性能的进一步提升需求，将改进的最

小二乘支持向量机用于番茄品质检测。在番茄内部品质

检测中，该方法展现出显著的性能优势，其中可溶性固形

物含量预测的决定系数较传统最小二乘支持向量机提升

了 0.06。朱婷婷等［10］对 YOLOv11 模型在番茄缺陷检测

中的适配性问题进行了精准改进，mAP 与检测速度均优

于同类模型，尤其在微小缺陷与复杂背景场景中表现突

出。施利春等［11］聚焦番茄综合品质检测，构建了机器视

觉和高光谱融合技术框架，整合改进 U-Net 与 IWOA-

LSSVM 模型。该方法推动综合品质检测从技术叠加向

深度协同升级，决定系数>0.960，均方根误差＜0.012 5，

平均检测时间＜0.032 s，解决了传统融合方法中目标区域

提取不精准、模型参数优化效率低的问题。郭德超等［12］

基于机器视觉和光谱技术的融合思路，实现了番茄内外

部品质的同步检测。融合品质分级准确率>96.00%，平

均分级时间＜0.25 s，系统稳定性强、成本低，适合中小生

产线应用。单一机器视觉技术研究已实现外部品质检测

精度达 95% 以上，但无法突破仅能检测表面特征的局限。

高光谱技术已实现内部物质决定系数达 94% 以上，但该

类研究多单独进行内部品质分析，未与外部检测环节联

动。初步融合技术多采用分阶段检测模式，检测准确率

和效率均有待进一步优化。

试验拟针对自动化生产线番茄品质检测存在的问

题，构建一套高光谱与机器视觉融合的检测系统。高光

谱 数 据 经 预 处 理 后 ，将 其 导 入 经 改 进 浣 熊 优 化 算 法

（COA）优化后的最小二乘支持向量机（LSSVM）模型中，

通过该模型完成番茄可溶性固形物与硬度的检测，最终

实现番茄内部品质检测。机器视觉数据预处理后输入改

进 YOLOv12 模型检测外部缺陷，并计算番茄尺寸与果形

指数，实现番茄外部品质检测，并通过试验验证该方法的

优越性，旨在为自动化生产线番茄品质检测提供高效、可

靠的技术方案，推动食品行业在线品质监控的智能化

升级。

1　自动化生产线番茄品质检测系统

自动化生产线番茄品质检测系统结构如图  1 所示，

整体遵循数据采集—分析处理—执行反馈的闭环逻辑设

计，主要由数据采集装置、上位机 PC、执行机构等组成，各

模块功能协同、数据互通，确保番茄内外部品质检测的精

准性与生产线的连续性。数据采集装置作为系统获取番

茄品质信息的核心模块，集成高光谱成像单元（高光谱仪

检测范围 400~1 000 nm，光谱分辨率 5 nm）与机器视觉成

像单元（由 2 台工业彩色相机组成，分辨率 1 920 像素×
1 080 像素，帧率≥120 帧/s，满足高速检测需求）。上位机

PC 搭载定制化的番茄品质检测系统，承担数据预处理、模

型分析、结果输出与系统控制功能，是连接感知端与执行

端的核心。执行机构基于上位机 PC 机输出的品质标签，

完成番茄的分级分拣（一级、二级、三级）。

2　番茄内外品质检测模型

2.1　内部品质检测

番茄内部品质检测通过高光谱进行数据采集，为了

消除因光照不均、仪器噪声、样品表面散射等因素带来的

干扰，提升后续模型的预测精度和稳定性。通过标准正

图 1　自动化生产线番茄品质检测系统结构

Figure 1　Structure of tomato quality inspection system for 

automated production line
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态变量变换 SNV、SG 平滑和一阶导数进行滤波，SNV 对

每一条光谱曲线进行标准化处理，消除散射影响。使用

SG 平滑对 SNV 处理后的光谱进行降噪，然后再计算其一

阶导数，以进一步锐化特征峰。通过窗口竞争性自适应

重加权采样（WCARS）特征提取方法，简化模型、减少计

算量、提高模型鲁棒性。WCARS 是在经典的竞争性自适

应重加权采样（CARS）算法基础上发展而来的一种改进

方法。它通过引入滑动窗口机制，有效克服了 CARS 在处

理高维、强共线性光谱数据时，可能因随机选择而丢失重

要连续波段信息的缺陷，从而筛选出更具代表性、更稳定

的特征波长组合［13-15］。

在番茄光谱图像检测（如可溶性固形物、硬度等）场

景中，LSSVM 凭借对高维数据、小样本场景的适配性，以

及计算效率与预测精度的平衡优势，成为优于传统回归

模型的核心算法，预处理后数据通过 LSSVM 模型检测番

茄可溶性固形物和硬度。为了克服传统  LSSVM 模型参

数（惩罚系数 C 和核函数参数 σ）选择依赖经验、易陷入局

部最优的问题，试验引入并改进了浣熊优化算法（COA）

来对其进行参数优化。传统的参数选择方法（如网格搜

索、随机搜索）存在效率低、易陷入局部最优等问题。而

COA 作为一种新兴的智能优化算法，在解决这个问题上

展现出了显著的优势［16-18］。

为了提升 ROA 的收敛速度和寻优精度，避免过早陷

入局部最优，试验从以下方面进行改进。

（1） 自适应权重因子：在算法迭代初期，赋予较大的

权重以增强全局探索能力。在迭代后期，减小权重以增

强局部开发能力。将传统固定的惯性权重 w替换为随迭

代次数动态变化的自适应权重wt，如式（1）所示。

wt = wmax -(wmax - wmin )× t
T
， （1）

式中：

wmax、wmin——权重的最大值和最小值，［0.4，0.9］；

t——当前迭代次数；

T——最大迭代次数。

（2） 混沌映射：为提升算法寻优精度，通过 Tent 映射

生成初始种群（分布均匀），如式（2）所示。
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1 - xt
1 - α

,xt ≥ α
， （2）

式中：

xt+ 1、xt——第 t+1 次和 t次迭代的状态值；

α——随机数。

（3） 引入 Levy 飞行：Levy 飞行将作为一种变异或跳

跃机制，以一定概率替换原有的随机扰动项，用于帮助算

法跳出局部最优。生成符合 Levy 分布的随机步长 s 是关

键。最常用的数值实现方法是 Mantegna 算法，它通过

2 个正态分布来生成 Levy 随机数。如式（3）所示。

s= u/ | v |∧ ( 1/β )， （3）

式中：

β——Levy 分布的稳定性参数，通常取值为（0，2］；

u、v——服从正态分布的随机数。

番茄内部品质检测步骤：

步骤 1：数据采集，通过高光谱仪采集不同成熟度番

茄的光谱数据。

步骤 2：数据预处理，对高光谱数据进行预处理。

步骤 3：按 7∶3 比例将敏感波段与品质值数据划分为

训练集与测试集。

步骤 4：基于 Tent映射生成 LSSVM 参数（C、σ）初始种

群，以 RMSE 为适应度函数。

步骤 5：IROA 迭代寻优，计算当前种群中所有个体的

适应度值，适应度值最小个体作为全局最优。根据当前

迭代次数，计算该次迭代的自适应权重。

步骤 6：判断是否执行 Levy 飞行，执行则更新位置，

否则执行带自适应权重的常规更新。

步骤 7：是否达到最大迭代，达到输出最优模型参数，

否则转到步骤 5。

步骤 8：构建改进 COA-LSSVM 模型对测试集进行

测试。

2.2　外部品质检测

机器视觉采集数据预处理后，输入改进 YOLOv12 模

型检测外部缺陷，并计算番茄尺寸与果形指数，实现外部

品质检测。预处理的目标是最大化番茄目标与背景、缺

陷与正常果皮的对比度，为后续的深度学习模型提供高

质量、标准化的输入。试验将基于改进阈值函数的小波

变换滤波算法用于机器视觉番茄图像的预处理，可以显

著提升图像质量，为后续的 YOLOv12 缺陷检测模型提供

更清晰、更鲁棒的输入，从而间接提高整个外部品质检测

系统的精度和稳定性［19］。

YOLOv12 是一个高度优化的实时目标检测器，其架

构延续了 YOLO 系列骨干—颈部—检测的经典设计，但

在每个部分都进行了关键创新。

（1） 骨干网络：骨干网络的核心任务是从输入图像中

提取丰富的、多尺度的特征。YOLOv12 在该方面进行了

多项关键改进，以在速度和精度之间取得极致平衡。核

心架构 CSPNetv2，核心创新 ELANv2 模块，下采样与空间

金字塔池化。

（2） 颈部网络：颈部网络的作用是对骨干网络输出的

多尺度特征进行深度融合，将高层的语义信息传递到低
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层，将低层的定位细节信息传递到高层，从而生成对多尺

度目标检测都有鲁棒的特征。核心架构 PAFPNv2、核心

创新引入注意力机制。

（3） 检测层：检测层负责根据颈部网络输出的最终特

征图，直接预测目标的边界框、类别和置信度。YOLOv12

采 用 了 无 锚 框（Anchor-Free）的 检 测 头 。 核 心 架 构

Decoupled Head（解耦头），输出格式 Anchor-Free。

YOLOv12 模型结构如图 2 所示。

针对番茄表面缺陷检测的特点（小目标多、特征不明

显、背景单一但存在干扰），对 YOLOv12 模型进行以下关

键改进。

（1） 可变卷积：标准卷积的感受野是固定的，对于番

茄表面不规则、非刚性的缺陷（如裂纹、凹陷），其特征可

能落在标准网格的“间隙”中，导致提取不充分。可变卷

积（deformable convolution）通过学习额外的偏移量，能够

动态调整采样点的位置，使感受野自适应于目标的形状，

从而更精确地捕捉缺陷的边缘和细节。

（2） CBAM 优化：尽管背景相对单一，但番茄表面的

高光、反光以及传送带的纹理仍然构成干扰。CBAM 模

块能够让模型自动学习通道注意力和空间注意力，从而

抑制无关背景和噪声，突出缺陷特征。

改进 YOLOv12 结构如图 3 所示。

基于边界框的方法计算速度极快，非常适合集成到

高速生产线的实时检测系统中，试验通过该方法计算番

茄尺寸。为了克服标准方法对旋转的敏感性，引入旋转

边界框计算果形指数。

3　番茄内外品质试验

3.1　参数设置

为系统验证所提内外品质检测方法的优越性，构建

了一体化试验平台，主要由数据采集装置、上位机 PC、执

行机构等组成，数据采集装置作为系统获取番茄品质信

息的核心模块，集成高光谱成像单元（光谱仪 ImSpector 

V10E，光谱检测范围 400~1 000 nm，光谱分辨率 5 nm）与

机器视觉成像单元（由 2 台工业彩色相机 Hayear HY-3699

组成，分辨率 1 920 像素×1 080 像素，帧率≥120 帧/s，满

足高速检测需求）。上位机 PC 搭载定制化的番茄品质检

测系统，承担数据预处理、模型分析、结果输出与系统控

制功能。执行机构基于上位机 PC 机输出的品质标签，完

成番茄的分级分拣。结合 GH/T 1193—2021《番茄》和

NY/T 940—2006《番茄》等标准对番茄进行等级划分，以

GH/T 1193—2021 为核心依据（因其指标更细化、量化更

精准，适配自动化检测需求），同时参考 NY/T 940—2006

的核心分级原则（确保与行业传统标准的兼容性）［20-21］。

将番茄表面划分为存在缺陷（三级）和无缺陷（一级）；番

茄直径＜60 mm（三级），60~80 mm（二级），>80 mm（一

级）；果形指数为 0.9~1.2（一级），0.8~0.9 或 1.2~1.4（二

级），＜0.8（三级）；番茄可溶性固形物含量>8.0 °Bx（一

级）、6.0~8.0 °Bx（二级）、＜6.0 °Bx（三级）；硬度>3.5 N

（一级）、2.5~3.5 N（二级）、＜2.5 N（三级）。按照缺陷、番

茄直径、果形指数、番茄可溶性固形物和硬度逐级进行划

分。有一个指标为三级即三级果，各指标均为一级即一

图 2　YOLOv12 结构

Figure 2　YOLOv12 structure

图 3　改进 YOLOv12 结构

Figure 3　Improved YOLOv12 structure

94



| Vol.41， No.12 刘 军等：基于改进 LSSVM 和 YOLOv12的番茄加工生产线品质检测方法

级果。番茄共 1 500 个，其中一级番茄 500 个，二级番茄

500 个，三级番茄 500 个，一级、二级、三级番茄各采集图像

1 000 张，共计 3 000 张，根据 7∶1∶2 比例划分为训练集、验

证集和测试集。采用  TA.XT Express 质构仪，按照 GH/T 

1193—2021 中的“穿刺法”测量番茄硬度，采用便携式数

显折射仪 PAL-1，依据 NY/T 940—2006 标准测量可溶性

固形物含量。机器视觉采集部分番茄样本如图 4 所示，番

茄原始光谱图如图 5 所示，系统参数见表 1，算法参数

见表 2。

3.2　试验结果

为了验证试验所提改进 COA-LSSVM（内部品质）检

测方法的优越性，选取两类典型对比模型：未优化的基础

LSSVM 模型（依赖经验选择惩罚系数 C 与核函数参数

σ）、文献［9］改进鲸鱼算法（IWOA）优化 LSSVM 模型（主

流 智 能 优 化 算 法 优 化 的 LSSVM）。 以 均 方 根 误 差

（RMSE）为适应度函数，训练后模型用于测试集测试，3 类

方法可溶性固形物和硬度检测曲线如图 6 所示，可溶性固

形物检测结果见表 3，硬度检测结果见表 4。

图 4　机器视觉采集部分番茄样本

Figure 4　Machine vision collection for some tomato samples

图 5　番茄原始光谱图

Figure 5　Original spectrogram of tomatoes

表 1　系统组成

Table 1　System composition

CPU

AMDRyzen 

75800H

GPU

NVIDIA GeForce 

RTX 3070

Python 环

境

Python 

3.7.7

工业相机

Hayear HY-

3699

光谱仪

ImSpector 

V10E

番茄硬度测量

TA. XT Express

质构仪

番茄可溶性固形

物含量

便携式数显折

射仪 PAL-1

操作

系统

Windows

深度学

习框架

pytorch1.5

表 2　算法参数

Table 2　Algorithm parameters

原图尺寸

640 像素×640 像素

初始学

习率

0.001

批量

大小

8

迭代

次数

100

优化器

AdamW

种群

30

最大迭

代次数

100

权重

［0.4，0.9］

稳定性

参数

1.5

α为随

机数

0.5

惩罚系数

［10-3，103］

核函数参数

［10-3，103］

图 6　3 类方法可溶性固形物和硬度检测曲线

Figure 6　Soluble solids and hardness curves of three methods

95



食品装备与智能制造  FOOD EQUIPMENT & INTELLIGENT MANUFACTURING 总第  290 期  | 2025 年  12 月  |

由图 6、表 3 和表 4 可知，从决定系数（R2）和 RMSE 指

标来看，试验所提改进 COA-LSSVM 方法在番茄可溶性

固形物和硬度检测中均表现最优。其中，可溶性固形物

检 测 的 R² 为 0.965，较 LSSVM 和 文 献［9］的 分 别 提 升

9.16% 和 2.33%。RMSE 仅为 0.082 °Bx，较 LSSVM 和文

献［9］的分别降低 67.72%，28.29%。硬度检测中，改进

COA-LSSVM 的 R2 为 0.975，较 LSSVM 和文献［9］的分别

提升 9.30% 和 2.52%；RMSE 低至 0.061 N，较 LSSVM 和文

献［9］的分别降低 70.24%，40.20%。表明改进 COA 算法

对 LSSVM 参数的优化效果更优，能更精准地拟合番茄内

部品质与检测信号间的非线性关系，有效降低预测误差。

在平均检测时间方面，COA-LSSVM 方法同样展现出明显

优势。可溶性固形物检测平均耗时 0.145 s，较 LSSVM 和

文献［9］的分别缩短 48.21%，32.56%；硬度检测平均耗时

0.131 s，较 LSSVM 和 文 献［9］的 分 别 缩 短 51.84%，

37.62%。这是因为 COA 算法的寻优机制更高效，相较于

依赖经验试错的 LSSVM，COA 能快速锁定最优参数组

合。相较于 IWOA 算法复杂的种群更新策略，COA 的搜

索步骤更简洁，在保证寻优精度的同时，显著减少了参数

优化与模型训练的时间成本，更适用于番茄内部品质的

快速检测场景。

为 验 证 试 验 所 提 外 部 品 质 检 测 方 法（以 改 进

YOLOv12 为核心）的性能优越性，选取两类对照模型进行

对比分析：未经过优化处理的原始 YOLOv12 模型和文献

［10］提出的改进 YOLOv11 模型（该模型属于当前主流的

轻量化改进目标检测模型范畴）。检测过程以相同批次

的番茄样本集为测试对象，不同方法检测结果见表 5。

由表 5 可知，试验方法在多个指标的检测性能方面优

于现有方法。试验所提改进 YOLOv12 准确率为 99.50%，

较 YOLOv12 和文献［10］的分别提升 7.80%，2.31%。在平

均 精 度 均 值 指 标 上 ，YOLOv12 的 平 均 精 度 均 值 为

99.20%，较 YOLOv12 文献［10］的分别提升 9.61%，3.77%。

YOLOv12 的检测速度达到 105 帧/s，与 YOLOv12 相比提

升了 34.6%，但较文献［10］的提升了 14.1%。这是因为

YOLOv12 虽检测速度满足基础需求，但因特征提取能力

不足，准确率与平均精度均值较低，难以应对复杂缺陷检

测场景。文献［10］的改进 YOLOv11 通过轻量化优化提

升了检测速度与精度，但对低对比度、小尺寸缺陷的识别

能力仍有欠缺。而试验所提改进 YOLOv12 通过特征增

强+轻量化设计的双重优化，实现了高准确率—高平均

精度—高检测速度的三重突破，充分验证了其在番茄外

部品质检测中的优越性。

为验证试验所提检测方法的优越性，选取两类主流

检测方案（在语义分割、目标检测与回归结合方面各有优

势）作为对比：文献［11］的多尺度残差注意力 U-Net+改

进 LSSVM 方法（侧重语义分割与回归结合）和文献［12］

的改进 YOLOv8+改进 LSSVM 方法（侧重目标检测与回

归结合）。通过检测准确率（分级精度）与平均检测时间

（实时性）两大核心指标，在相同测试集（600 个番茄，各等

级 200 个）上开展对比试验，以量化评估试验方法的性能

优势。不同方法检测效果对比见表 6。

由表 6 可知，试验方法性能显著优于对比方法，满足

生产线高速检测需求。试验方法平均检测准确率达

98.67%，较 文 献［11］和 文 献［12］的 分 别 提 升 3.86%，

表 3　3类方法可溶性固形物检测结果

Table 3　Detection of soluble solids using three methods

方法

LSSVM

文献［9］

试验方法

决定系数

0.884

0.943

0.965

均方根误差/°Bx

0.254

0.125

0.082

平均检测时间/s

0.280

0.215

0.145

表 4　3类方法硬度检测结果

Table 4　Hardness detection using three methods

方法

LSSVM

文献［9］

试验方法

决定系数

0.892

0.951

0.975

均方根误差/N

0.205

0.102

0.061

平均检测时间/s

0.272

0.210

0.131

表 5　不同方法检测结果

Table 5　Detection results using different methods

方法

YOLOv12

文献［10］

试验方法

准确率/%

92.30

97.25

99.50

平均精度均值/%

90.50

95.60

99.20

检测速度/（帧·s-1）

78

92

105

表 6　不同方法检测效果对比

Table 6　Comparison in efficacy of different methods

方法

文献［11］

文献［12］

试验方法

等级

一级

二级

三级

一级

二级

三级

一级

二级

三级

番茄

数量

200

200

200

200

200

200

200

200

200

检测准

确数

185

190

195

190

192

194

196

198

198

检测准

确率/%

95.00

96.00

98.67

平均检测

时间/s

0.48

0.38

0.30
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2.78%。试验方法平均检测时间为 0.30 s，较文献［11］ 和

文献［12］的分别缩短 37.50%，21.05%。这是因为文献

［11］受限于语义分割的高计算量，实时性差。文献［12］

虽提升了速度，但小缺陷与中间等级（二级果）分级精度

不足。而试验方法通过外部检测架构优化+内部预测参

数优化，同时攻克小缺陷漏检、中间等级误判、检测效率

低的三大痛点，综合性能最优，可直接应用于番茄产业的

自动化分级生产线。

4　结论

试验提出了一种结合高光谱与机器视觉的番茄品质

同步、无损和高效检测方法。结果表明，试验所提方法在

番茄内外品质检测中均取得了较好的检测效果，在内部

品质检测方面，对番茄可溶性固形物和硬度检测的决定

系数>0.965，均方根误差＜0.082 °Bx，耗时＜0.145 s。在

外部品质检测方面，缺陷检测准确率>99.00%、平均精度

均>99.00%，检测速度>100 帧/s。相比于文献［11］和文

献［12］的主流方案，试验所提融合系统综合性能更优：平

均检测准确率为 98.67%，较文献［11］和文献［12］的分别

提升 3.86%，2.78%；平均检测时间为 0.30 s，较文献［11］和

文献［12］的分别缩短 37.50%，21.05%，攻克了小缺陷漏

检、中间等级误判、检测效率低的痛点。但当前高光谱成

像设备初期投入较高，对中小企业来说门槛较高，如何通

过设备轻量化改造或探索共享检测模式降低适配成本，

是扩大应用覆盖面的关键。在生产线常见的复杂背景下

（如番茄粘连堆叠、叶片/茎秆残留干扰），系统误检率较

高，需进一步优化模型算法与硬件协同方案，强化复杂场

景适应性。长期运行中，受番茄品种更迭、设备部件老化

等影响，模型易出现检测精度漂移，需建立全周期防控机

制。后续可以结合边缘计算设备和建立模型定期校准机

制等进一步提高模型的检测性能。
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