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机器人在酒醅发酵车间地缸区域的
路径规划方法

郭守杰 1 田建艳 1 成 龙 1 王素钢 2

（1. 太原理工大学电气与动力工程学院，山西  太原   030024； 2. 山西万立科技有限公司，山西  太原   030000）

摘要：［目的］解决清香型白酒发酵车间内地缸区域的路径规划问题。［方法］提出一种 C-EAFO-YBWC 的机器人路径规

划方法。首先，通过伽马校正和非锐化掩膜增强图像，结合自适应 FAST 阈值优化 ORB 特征点提取，保证 ORB-SALM2

算法在复杂光照下的定位精度；然后，基于 YOLOv10n 引入 BiFPN 和 CA 注意力机制优化网络并结合 WIoU，用于检测

地缸获取路径点；最后，结合机器人自定位和地缸检测，通过坐标变换将路径点与机器人统一至同一坐标系，指导机器

人运动。［结果］在 EuRoC 数据集选取的 4 个测试序列中，RMSE 分别降低了 2.60%，43.26%，12.72%，30.10%，地缸数据

集 测 试 中 ，mAP@0.5 提 高 了 1.1 个 百 分 点 ，Params 和 FLOPs 分 别 减 少 了 8.33%，2.32%。［结论］改 进 的 EAF_ORB-

SLAM2 和 YOLOv10n_BWC 算法有效保证了路径规划算法的有效性。
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Path planning method for robots in the ground-pot areas of 
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Abstract: ［［Objective］］ To address the path planning challenges for robots in the ground-pot areas of light-flavor Baijiu fermentation 

workshops. ［［Methods］］ A robotic path planning method, named C-EAFO-YBWC, is proposed. First, gamma correction and unsharp 

masking are used to enhance image quality, combined with the adaptive FAST threshold to improve ORB feature point extraction, ensuring 

the localization accuracy of the ORB-SLAM2 algorithm under complex lighting. Second, BiFPN and Coordinate Attention (CA) 

mechanisms are integrated into YOLOv10n and optimized with WIoU to detect fermentation pots and generate path points. Finally, by 

combining robot self-localization and ground-pot detection, the path points are transformed into the robot's coordinate system to guide its 

motion. ［［Results］］ In the four test sequences selected from the EuRoC dataset, the RMSE is reduced by 2.60%, 43.26%, 12.72%, and 

30.10%, respectively. In tests using a ground-pot dataset, mAP@0.5 improves by 1.1 percentage points, while Params and FLOPs are 

reduced by 8.33% and 2.32%, respectively. ［［Conclusion］］ The proposed EAF_ORB-SLAM2 and YOLOv10n_BWC algorithms effectively 

ensure the validity of path planning.

Keywords: ground-pot area; path planning; self-localization; ground-pot detection; coordinate transformation

清香型是白酒的重要香型之一。作为重要的发酵容

器，地缸在清香型白酒酿造过程中发挥着关键作用。目

前，在酒醅出缸环节中主要的出缸方式仍以人工为主，存

在工作量大，劳动强度高等问题。酒醅发酵车间主要包
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括过道走廊区域和地缸区域两部分，区别于过道走廊的

大区域平坦路段，地缸区域主要由地缸和地面组成，属于

多坑洞、狭窄环境，为此需要设计一种机器人在酒醅发酵

车间地缸区域的路径规划算法。

路径规划是机器人自主作业的关键技术，其目的在

于实现机器人从给定起点到终点的安全运动规划，不同

的路径规划方法和实现方式取决于实际的作业环境和任

务需求。针对自主水下航行器［1］在海洋环境中工作，

Zhang 等［2］、Sui等［3］、Zhang 等［4］分别使用了基于 A*和 APF

算法、蚁群优化算法和粒子群优化算法、矢量场自适应

DWA 的路径规划方法。而在煤矿这一特殊环境中，王宏

伟等［5］为轮式煤矿机器人提出了一种 A*算法和势场法的

路径规划算法；朱洪波等［6］在煤矿救援机器人中应用了分

层平滑优化双向 A*引导 DWA 的路径规划方法。上述路

径规划算法的设计考虑了机器人本身的特性和环境特

点，由于发酵车间的地缸区域主要特征在于埋于地下的

开口地缸，在障碍物和行进方式上与上述情况具有较大

差异，故根据实际需求设计新的路径规划算法。

由于视觉里程计仅依赖于相机来获取大量的纹理

信息，进行位姿估计，对传感器要求相对较低，故而受到

广泛关注。视觉 SLAM 作为里程计的重要应用，也成为

SLAM 中的研究热点，ORB-SLAM2［7］是一种基于 ORB

特征点实现的 VSLAM 经典算法代表，因其算法优异的

鲁棒性和稳定性备受关注，其视觉里程计的设计也极具

代表性。然而，ORB 特征提取算法在光照变化情况下使

用固定的 FAST 阈值来检测是否为关键点存在局限性。

薛金林等［8］通过求解全局像素偏差计算特征点的自适

应阈值；黎萍等［9］通过自适应伽马算法增强 ORB 特征点

在弱光环境下的性能；Babu 等［10］通过卷积神经网络来预

测自适应阈值；也有学者提出了基于局部像素分布的自

适应阈值计算方法，如自适应中位数［11］和自适应统计［12］

的方法。

目标检测是计算机视觉中的一个重要任务，随着深

度学习的发展，基于卷积神经网络的目标检测算法因其

优异的性能被广泛应用，张小艳等［13］、邓超等［14］、Yang

等［15］、代云等［16］分别在行人、车辆、番茄、槟榔的检测上进

行了应用，并对算法在轻量化、检测精度等方面进行了优

化。在清香型白酒发酵车间内地缸区域中，由于二维地

图无法反映地缸的特殊性，且不定时的地缸破损或翻动

土壤，会导致地缸位置变化，无法构建永久性三维地图，

所以已有的路径规划算法难以解决该特殊环境的规划任

务。试验拟提出一种 C-EAFO-YBWC 的机器人路径规划

方法，通过自定位和地缸检测解决机器人“我在哪里”和

“我去哪里”的路径规划问题。对于地缸区域的复杂光照

环境，通过图像增强和自适应 FAST 阈值优化 ORB 特征

点提取，保证改进的 EAF_ORB-SLAM2 算法在复杂光照

下的定位鲁棒性；同时，改进 YOLOv10n 网络结构和损失

函数，提出一种 YOLOv10n_BWC 目标检测算法，增强地

缸检测的精度和效率。结合机器人自定位与地缸检测结

果，通过坐标变换将机器人坐标和路径点统一到世界坐

标系，构建路径规划逻辑，实现机器人在地缸区域的路径

规划。

1　酒醅发酵车间地缸区域分析

专用酒醅取料复合机器人由 AGV 底盘、六轴机械

臂 、取 料 装 置 组 成［17］。 其 六 轴 机 器 臂 末 端 处 安 装 有

RGBD 相机，机器人在地缸区域行进过程中，相机俯视地

面 采 集 图 像 信 息 。 俯 视 采 集 地 面 及 地 缸 图 像 如 图 1

所示。

地缸是由陶土烧制、埋于地下的广口容器，地缸口相

平或略高于地面，在发酵车间分布密集。原料在地缸中

发酵生成酒醅，发酵车间地质松软，地缸间距狭窄，受到

老旧地缸制造工艺的限制，其非绝对圆形、规格不一，空

间分布不均匀，存在偏差。因此，机器人在地缸区域的路

径规划需要考虑以上因素调整航向角度，安全到达指定

挖取点。

图 2 为机器人地缸区域工作示意图，机器人到达待挖

取缸所在列的入口处（地缸区域路径规划起始点），路径

规划传感器由二维激光雷达切换为 RGBD 相机。

特殊的地缸区域环境对机器人路径规划提出了新

的要求：区别于普通障碍物避障，地缸区域要求机器人

跨于当前列地缸上方行驶，避免机器人车轮压坏地缸边

缘甚至落入地缸；对于行驶的地面宽窄不一情况，要求

机器人在行驶安全性上具有较好的规划精度，发酵车间

属于空旷区域，激光雷达精度难以达到地缸区域的行驶

要 求 ，且 运 动 方 式 为 小 角 度 折 线 运 动 ，故 选 用 ORB-

SLAM2 作为视觉里程计实现机器人自定位；在无地缸区

域地图情况下，面对检测地缸获取路径点的规划任务，

要求对地缸进行检测及计数，使机器人到达指定地缸待

图 1　俯视采集地面及地缸图像

Figure 1　Ground and ground-pot images from a top-down 

perspective
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挖取位置。

试验提出的 C-EAFO-YBWC 机器人路径规划方法如

图 3 所示。

通过改进的 ORB-SLAM2 算法得到相机在地缸区域

的轨迹定位，并利用目标检测获取图像坐标系下的路径

点，结合相机与机器人存在的刚体变换关系，将机器人和

路径点通过坐标转换统一到世界坐标系，引导机器人

运动。

2　EAF_ORB-SLAM2 的酒醅取料机器人

自定位
机器人自定位是实现路径规划和导航等任务的关键

技术，为其提供必要的空间信息，解决了机器人“我在哪

里”的问题。在面对复杂光照环境和低纹理的地缸区域

环境时，以 ORB-SLAM2 作为视觉里程计存在 ORB 算法

无法提取特征点或特征点质量低下的问题，为此提出一

种基于图像增强和自适应 FAST 阈值的 ORB 特征点提取

方法，来增强 ORB-SLAM2 算法的鲁棒性，根据 ORB-

SLAM2 获取相机运动轨迹，结合相机与机器人存在的刚

体变换关系，经由坐标变换得到机器人在世界坐标下的

坐标，实现机器人在地缸区域的自定位。

2.1　基于图像增强和自适应 FAST 阈值的 ORB 特征点

提取方法

以 ORB-SLAM2 作为视觉里程计框架，优化特征点

提取方法并进行应用，EAF_ORB-SLAM2 跟踪线程框架

如图 4 所示。

ORB-SLAM2 算法跟踪线程的主要职能在于精准地

识别并匹配局部地图中的 ORB 特征点，跟踪地图并新建

关键帧，以此来估算当前帧的相机位姿。改进的框架针

对 ORB 特征点提取，增加了图像增强环节并设置了自适

应阈值提取特征点。

2.1.1　图像增强　针对光照环境不统一问题，设计自适

应伽马校正和非锐化掩膜的图像增强策略来改善光照环

境，提高算法对环境的适应性，降低对特征点提取的影

响。在此，将图像由 RGB 颜色空间转换至 HSV 颜色空

间，提取 HSV 颜色空间下的亮度图像 V 进行增强处理。

（1） 自适应伽马校正：为调整图像亮度，提高图像质

量，引入伽马校正用于改善图像的视觉信息。伽马校正

如式（1）所示。

GC ( I )= I γ， （1）

式中：

I——输入图像；

γ——伽马值（γ> 1 会降低图像亮度，γ< 1 会提高

图像亮度）。

聚焦良好、清晰明亮的图像具有相对较高的熵，可以

用来描述图像像素值的分布情况，反映图像的复杂性和

信息量。Lee 等［18］提出了一种最大熵伽马校正（GCME）

用以实现自适应伽马值计算，改善不同光照情况下的图

图 2　机器人工作示意图

Figure 2　Robot operation

图 4　EAF_ORB-SLAM2 跟踪线程框架

Figure 4　EAF_ORB-SLAM2 tracking thread

图 3　C-EAFO-YBWC 路径规划方法框图

Figure 3　C-EAFO-YBWC path planning
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像信息，为进一步防止弱光图像的 γ过小而导致的亮度过

度增强，设计的自适应伽马值如式（2）所示。
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， （2）

式中：

P ( I ')——灰度级概率密度函数；

I '——图像归一化强度，I '∈ [ 0，1 ]；
β——设定的阈值；

μ——归一化图像的均值。

当图像的平均亮度小于阈值 β时，在 GCME 算法得到

的 γ基础上适当增加 β而避免亮度过度增强。为进一步

改善图像质量，抑制图像对比度过度增强，使用限制对比

度直方图均衡（CLAHE）算法，优化细节信息并进行局部

对比度增强。

（2） 非锐化掩膜：为突出图像细节、增强纹理，引入非

锐化掩膜技术，其利用低通滤波器来获得模糊图像，并以

此创建一个掩膜，结合原始图像来实现图像细节增强［19］。

为了消除图像中的高斯噪声，首先采用高斯滤波算

法，用高斯核对图像进行卷积来实现滤波运算。高斯卷

积核如式（3）所示。

h ( x,y )= 1
2πσ 2 exp ( - x2 + y2

2σ 2 )， （3）

式中：

σ——正态分布的标准差；

x、y——以图像左上角为原点的像素点的横坐标和纵

坐标。

高斯滤波器数学模型如式（4）所示。

f ( x,y)= I ̂ ( x,y ) ∗h ( x,y)， （4）

式中：

*——卷积算子；

I ̂ ( x，y )——伽马校正和 CLAHE 增强后图像。

非锐化掩膜 gmask( x，y)如式（5）所示。

gmask( x,y)= I ̂ ( x,y )- f ( x,y)， （5）

锐化后的图像如式（6）所示。

F ( x,y)= I ̂ ( x,y)+ k ⋅ gmask( x,y)， （6）

式中：

k——锐化水平（对于非锐化掩膜技术，k=1）。

通过伽马校正和 CLAHE 得到增强的亮度图像，并利

用非锐化掩膜增强细节，结合色域图像 H 和饱和度图像

S，得到新的 HSV 图像，进而转换为 RGB 颜色空间下的彩

色图像。

2.1.2　自适应 FAST 阈值　FAST 阈值是判断像素点是否

为 ORB 特征点的重要依据，其通过比较中心点与邻域像

素的灰度差，与设定阈值 t 比对，从而判断像素点是否为

ORB 特征点。FAST 特征提取结构如图 5 所示。

固定的阈值往往难以满足不同图像的特征点提取需

求，为了增强 FAST 算法的通用性和鲁棒性，结合自适应

阈值改进 FAST 角点提取方法，根据图像差异设置的不同

的阈值以达到更好的特征点提取效果。在此，计算图像

中像素灰度值的偏差作为其自适应阈值 t，如式（7）、式（8）

所示。

tadaption = ∂ 1
HW ∑

i,j
[ ]F ( xi,yj )- F̄

2
， （7）

t=ì
í
î

tadaption,tadaption ≥ tmin

tmin,tadaption < tmin
， （8）

式中：

F̄——图像像素均值；

H、W——图像高度和宽度；

∂——比例系数。

由式（7）可知，通过计算图像灰度值偏差，结合比例

系数 ∂ 得到阈值 tadaption，初始设定 ∂ = 1，若未能在划分网

格提取满足条件的特征点，设置步长为 0.05，逐步减少 ∂
直至满足特征点的提取数目需求。由式（8）可知，设置最

低阈值 tmin，避免 tadaption 过低而无法保证特征点质量，最终

得到自适应阈值 t，在完成提取特征点数目的同时并保证

特征点的质量，提高特征点的匹配效率。

2.2　酒醅取料复合机器人在地缸区域自定位

在 ORB-SLAM2 整个过程中，采用 ORB 算法进行特

征点检测和匹配，BA 算法进行非线性迭代优化，得到准

确的相机位姿轨迹和 3D 地图数据，获取相机坐标系到世

界坐标系的变换矩阵 TCW，能够反映相机在世界坐标系下

的位置变化，即相机的自定位。

由于相机安装于机械臂末端，与机器人存在固定的

刚体变换关系，所以 ORB-SLAM2 得到的相机位姿轨迹

能够反映机器人的位姿变化，两者存在一个固定的坐标

变换关系。机器人在世界坐标系下的坐标计算如式（9）

所示。

图 5　FAST 特征提取结构

Figure 5　Structure of FAST feature extraction
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式中：

(XW_r，YW_r，ZW_r)—— 机 器 人 在 世 界 坐 标 系 下 的

坐标；

(XC_r，YC_r，ZC_r)——机器人在相机坐标系下的坐标；

R、T——机器人坐标系到相机坐标系的旋转关系、平

移关系。

根据得到的机器人在相机坐标系下的坐标，又通过

ORB-SLAM2 已知相机在世界坐标下位姿变化，从而转换

为机器人在世界坐标下的运动，实现机器人的自定位。

3　基于地缸目标检测的路径点获取

在发酵车间地缸区域的机器人路径规划中，识别地

缸是一项重要的任务，可根据识别的地缸设计路径点，并

对是否达到待挖取缸进行判断，以此来解决机器人路径

规划中“我去哪里”的问题。为满足快速且精确的地缸检

测作业需求，选择基于深度学习的 YOLOv10n 目标检测

算法进行路径规划算法设计，并根据图像中地缸的检测

结果，结合位姿变换获取世界坐标系下路径点坐标。

3.1　改进的 YOLOv10n_BWC目标检测算法

根据机器人部署需求，选择 YOLOv10n 作为目标检

测模型［20］，YOLOv10n 网络由 4 个核心组件构成：输入阶

段（input）、骨干网络（backbone）、特征融合颈（neck）和检

测头（head）。YOLOv10n 算法是轻量级的优秀目标检测

算法，便于检测算法在移动设备的部署，能够满足众多实

际使用需求。

该目标检测任务主要为地缸检测，尽管大尺寸、形状

单一的地缸对于目标检测是一项简单的识别任务，但是

由于地缸检测框的偏差将导致路径点的不准确，检测精

度对于路径点是至关重要的，所以对地缸检测框精度提

出了更高的要求。为进一步提升目标检测精度并保证模

型轻量化便于部署，基于 YOLOv10n 引入 BiFPN 特征融

合网络优化网络结构，并使用 WIoU 损失函数，增强检测

精度，结合计算成本更低的 CA 注意力机制，提出一种

YOLOv10n_BWC 地缸检测模型。

YOLOv10n_BWC 网络结构图如图 6 所示。

3.1.1　BiFPN 特征融合网络　在 YOLOv10n 目标检测模

型中，其特征融合颈（neck）部分采用了特征金字塔网络

（FPN）和路径聚合网络（PANet）的组合架构［21-22］，其简单

的网络结构可能导致不同特征层对融合结果的贡献不

均，从而造成特征融合效率低下和检测性能受限的问题，

因此引入 BiFPN 来改进 YOLOv10n 的 Neck 部分网络。

FPN、PANet、BiFPN［23］特征构架如图 7 所示。

由图 7 可知，相较于 FPN、PANet，BiFPN 跨层级连接

的网络构架有助于更好地将图像特征信息传递至后面的

特征中，避免特征图信息的丢失，增强网络特征融合

能力。

3.1.2　CA 注意力机制　YOLOv10 引入了一种高效率的

PSA 模块，其组成的 MHSA 的优势在于能够捕捉长距离

依赖关系，但存在计算复杂度较高的问题，为此选择轻量

化的 CA 注意力机制［24］替换 PSA 模块。其通过将通道注

意力分解为两个一维特征编码过程，分别沿宽度和高度

两个空间方向聚合特征，可以在捕获长距离依赖关系的

同时保留精确的位置信息，使其能够捕获到感兴趣的区

域，并保证较低的计算成本。

3.1.3　改进边界框损失函数　YOLOv10n 边界框损失函

数采用 CIoU，其在真实框和预测框的重叠距离、中心点距

离、高宽比方面进行优化，但在两者高宽比呈线性关系

时，表现为低效性。因此，选择 WIoU 损失函数［25］替换

CIoU，WIoU 去除了 CIoU 纵横比惩罚项，平衡了不同质量

锚框对模型回归的影响，增强了模型的泛化能力和整体

性能。

图 6　YOLOv10n_BWC 网络结构图

Figure 6　YOLOv10n_BWC network

图 7　特征融合构架

Figure 7　Feature fusion architecture
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3.2　基于地缸检测的路径点获取

根据设定的拍摄角度，视野中存在的地缸范围是有

限的，通过图像检测结果得到所有检测的完整地缸检测

框，以当前列完整地缸检测框中心作为路径点。由深度

图像已知路径点在相机坐标系下深度 ZC_p，将路径点由图

像坐标系转换至相机坐标系如式（10）所示。
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式中：

(u，v)——路径点在图像坐标系下坐标；

(XC_p，YC_p，ZC_p)——路径点在相机坐标系下坐标；

fx、fy、cx、cy——相机内参。

由式（10）得到路径点在相机坐标系下坐标，结合相

机坐标系到世界坐标系的变换矩阵 TCW，将路径点转换到

世界坐标系下，如式（11）所示。
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式中：

(XW_p，YW_p，ZW_p)—— 路 径 点 在 世 界 坐 标 系 下 的

坐标。

路径点坐标和机器人坐标都是基于相机获取的，经

由式（9）、式（11）计算，得到机器人和路径点分别在世界

坐标系下的坐标，并以此相对位置关系控制机器人运动，

同时根据路径点（地缸检测中心）在世界坐标系的坐标，

考虑到地缸的尺寸规格和两相邻地缸间距，对地缸进行

计数，区分当前缸是否为待挖取缸，引导机器人到达指定

地缸的待挖取位置，以此构成地缸区域路径规划的方法

逻辑，最终实现机器人的路径规划任务。

4　试验与结果分析

为保证机器人在酒醅发酵车间地缸区域的路径规划

方法（C-EAFO-YBWC）的有效性，从算法定位精度和目

标检测两个方面进行仿真与试验研究。分别通过 EuRoC

数据集验证 EAF_ORB-SLAM2 算法在不同光照环境下的

轨迹定位精度，使用 COCO128 数据集、自制地缸数据集

验证 YOLOv10n_BWC 模型的目标检测精度和效率。

4.1　EAF_ORB-SLAM2算法定位测试

为了验证改进的 ORB 特征提取算法在复杂环境下的

性能，利用公开数据集 EuRoC 进行轨迹定位测试试验。

EuRoC 数据集由无人机采集，包含不同光照条件下的图

像序列，能够充分反映改进 ORB 提取方法对环境变化的

适应性。选取 4 组具有代表性的运动序列：V1_01_easy 和

MH_01_easy 为 正 常 光 照 条 件 下 环 境 图 像 集 ，V1_

03_difficult 和 MH_05_difficult 为复杂光照条件下环境图

像集。

通过对比 ORB-SLAM2 原始算法以及改进算法生成

的轨迹，以均方根误差（RMSE）、最大误差、平均误差、最

小误差、误差标准差和误差中值作为评价指标，分析各算

法在不同环境下的定位精度，结果见表 1。

由表 1 可知，改进算法在复杂光照条件下表现出显著

的性能提升，验证了其在环境适应性方面的优势。以

RMSE 作为衡量算法表现的关键指标，在 4 个测试数据集

上对改进算法与原始 ORB-SLAM2 算法进行的对比测试

中，EAF_ORB-SLAM2 算法的 RMSE 分别降低了 2.60%，

43.26%，12.72%，30.10%，平均误差也相应减少了 2.41%，

42.72%，15.10%，29.90%，且单独的图像增强和自适应特

征点的应用相对于原始算法也有精度的改善。结果表

明，即使在光照条件变化的情况下，改进后的算法也能更

有效地识别场景特征，从而提高 ORB-SLAM2 的轨迹定

位精度。在光照条件正常的环境下，改进算法同样展现

了良好的定位效果，在精度上有所提高。

4.2　改进目标检测算法 YOLOv10n_BWC试验

试验平台的硬件环境：NVIDIA GeForce RTX 4060 

Ti GPU（16 GB 显存）搭配 Intel Xeon E5-2683 v4 CPU。软

件环境：Ubuntu 20.04 系统，PyTorch 2.0.1 深度学习框架，

11.7 版 本 CUDA，Python 3.8 编 程 语 言 ，开 发 工 具 为

PyCharm IDE。不同目标检测算法对比试验均在相同环

境下进行，训练过程参数：初始学习率 0.01，优化器采用随

机梯度下降（SGD），训练迭代次数 300，批处理尺寸 32，输

入图像尺寸 640×640。

按式（12）和式（13）分别计算精确度（P）和召回率

（Re），在此以平均精度（mAP）来对检测效果进行评价，如

式（14）所示，IoU 为预测边界框和实际边界框的交并比，

若 IoU 的阈值为 0.5，平均精度即 mAP@0.5，IoU 在 0.50~

0.95（步长为 0.05）加权平均后的平均精度，即 mAP@0.5：

0.95。 此 外 ，选 用 参 数 量（Params）和 浮 点 计 算 次 数

（FLOPs）衡量模型轻量化程度。

P= NTP

NTP + NFP
× 100%， （12）

Re= NTP

NTP + NFN
× 100%， （13）

mAP = ∑i= 0
n AP
n

=
∑i= 0

n ∫
0

1

P ( )Re dR

n
， （14）

式中：

NTP、NFP、NFN——预测正确、预测错误、未被预测的

目标个数；

n——类别数目；

AP——在召回率为 0~1 范围内，模型对于某个类别
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预测精度的积分，即计算模型在所有可能的召回率水平

上的平均精度。

4.2.1　公开数据集测试　选用 COCO128 公开数据集进

行目标检测试验，其由 COCO 数据集中随机选取的 128 张

图像组成，具有丰富的场景、对象、环境，常用于目标检测

算法的快速试验和测试，能够有效反映算法性能。由于

数据集过小造成的对目标对象的训练不足，无法保证目

标检测精度，COCO128 的验证结果仅反映算法在通用场

景下的改进潜力，实际应用效果需通过拍摄的地缸数据

集进行验证。COCO128 数据集结果见表 2。

由表 2 可知，在 COCO128 数据集测试中，改进的

YOLOv10n_B、YOLOv10n_W、YOLOv10n_C 目标检测模

型相对于 YOLOv10n 均有较好的表现。YOLOv10n_B 使

用的 BiFPN 网络构架具有明显优势，有效提升了检测精

度；YOLOv10n_C 模型由于选用了计算成本更低的 CA 注

意力机制，Params 减少了 8.70%，具有较好的轻量化效果。

YOLOv10n_BWC 模型对于单独的模型修改表现更佳，相

比 于 YOLOv10n，Params 减 少 了 8.33%，FLOPs 减 少 了

2.32%，mAP@0.5 相对于 YOLOv10n 提升了 11.2 个百分

点，mAP@0.5：0.95 提升了 9.0 个百分点，尽管平均精度仍

较低，这是由于数据集本身决定的，但也能够反映出改进

算法的性能提升。综上，试验所提 YOLOv10n_BWC 模型

在保证模型轻量化的基础上，有效改善了目标检测精度，

但根据数据集特点和实际应用需求，这一效果仍需要通

过地缸检测进一步说明。

4.2.2　地缸数据集目标检测试验　为验证 YOLOv10n_

BWC目标检测算法对地缸的检测性能，拍摄实际场景地

缸图像制作数据集，由 855 张图像组成，经过图像翻转、

HSV 色域增强、随机缩放等，有效扩展数据数量，并且由

于完整地缸和非完整地缸的高度相似性，仅以是否完整

和遮挡作为评判标准，所以不进行裁剪变换、Mosaic 增强

的数据增强方式。地缸数据集图例如图 8 所示。

表 1　4种算法的轨迹评价对比

Table 1　Comparison of trajectory evaluation for four algorithms

数据集

V101

V103

MH01

MH05

算法

ORB-SLAM2

图像增强

自适应特征点

试验算法

ORB-SLAM2

图像增强

自适应特征点

试验算法

ORB-SLAM2

图像增强

自适应特征点

试验算法

ORB-SLAM2

图像增强

自适应特征点

试验算法

RMSE

0.088 4

0.086 5

0.086 6

0.086 1

0.107 5

0.077 9

0.078 3

0.061 0

0.040 1

0.036 5

0.037 1

0.035 0

0.058 8

0.052 5

0.053 7

0.041 1

最大误差

0.177 4

0.153 3

0.161 6

0.165 8

0.293 2

0.149 7

0.167 0

0.148 5

0.090 4

0.091 6

0.089 7

0.085 6

0.176 0

0.172 2

0.159 9

0.120 6

平均误差

0.082 9

0.081 2

0.081 2

0.080 9

0.099 0

0.073 5

0.071 2

0.056 7

0.035 1

0.030 5

0.031 2

0.029 8

0.049 5

0.048 1

0.045 8

0.034 7

最小误差

0.011 6

0.016 2

0.014 9

0.018 7

0.016 2

0.013 5

0.007 2

0.005 3

0.001 0

0.002 5

0.000 6

0.000 1

0.005 6

0.008 1

0.002 7

0.002 0

误差标准差

0.030 6

0.029 8

0.029 9

0.029 3

0.041 9

0.025 8

0.032 5

0.022 5

0.019 3

0.020 1

0.020 1

0.018 4

0.031 7

0.021 0

0.028 0

0.021 9

误差中值

0.078 9

0.076 1

0.076 0

0.075 0

0.092 8

0.068 7

0.073 4

0.055 7

0.030 5

0.025 7

0.026 6

0.023 9

0.040 0

0.044 9

0.037 4

0.031 7

表 2　COCO128数据集结果

Table 2　Experiments on COCO128 dataset

模型

YOLOv10n

YOLOv10n_B

YOLOv10n_W

YOLOv10n_C

YOLOv10n_BWC

BiFPN

×
√
×
×
√

WIoU

×
×
√
×
√

CA

×
×
×
√
√

mAP@0.5/%

24.4

31.1

26.6

30.1

35.6

mAP@0.5：0.95/%

16.0

21.7

19.0

21.2

25.0

FLOPs/B

8.6

8.6

8.6

8.4

8.4

Params/M

2.76

2.78

2.76

2.52

2.53
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将数据集按照 7∶1∶2 分配为训练集、验证集和测试

集，对图像中的完整地缸和非完整地缸进行标注，并保证

高的标注质量。地缸数据集试验结果见表 3。

由 表 3 可 知 ，在 精 度 表 现 方 面 ，mAP@0.5 相 比 于

YOLOv10n 提高了 1.1 个百分点，mAP@0.5：0.95 提高了

1.2 个百分点，其 Params 和 FLOPs 由网络结构决定，与训

练过程无关，分别减少了 8.33%，2.32%，有利于机器人的

部署。试验表明，改进的 YOLOv10n_BWC 目标检测模型

提高了地缸检测的精度和检测速度，保证了模型的轻

量化。

5　结论

针对清香型白酒发酵车间地缸区域多坑洞、狭窄环

境等特点，提出了一种 C-EAFO-YBWC 的机器人路径规

划算法。首先，为提升 ORB-SLAM2 在光照变化场景下

的鲁棒性，采用图像增强和自适应 FAST 阈值优化 ORB

特征点提取，提出一种 EAF_ORB-SLAM2 改进算法，实现

机器人在复杂光照地缸区域环境的自定位，从而有效解

决机器人“我在哪里”的问题；然后，基于 YOLOv10n 算

法，引入 BiFPN 优化网络结构，并使用 WIoU 损失函数优

化边界框回归稳定性、增强检测精度，结合轻量化的 CA

注意力机制，提出一种 YOLOv10n_BWC 的目标检测算法

用于地缸检测，将检测地缸中心作为路径点，解决机器人

“我去哪里”的问题；最后，结合坐标变换将路径点与机器

人统一到世界坐标系下，实现机器人在地缸区域的安全

运动控制。结果表明，试验方法能够有效提高机器人在

复杂光照环境中的定位精度及以地缸为目标的检测精度

和效率，能够适应发酵车间地缸区域环境要求。后续可

对多传感器融合里程计应用设计进行研究。
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