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基于近红外光谱和 FOA-RF的猪肉新鲜度检测
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摘要：［目的］实现猪肉新鲜度的快速、无损且高精度检测，解决传统检测方法效率低、破坏性强及单一模型预测精度不

足的问题。［方法］提出一种近红外光谱（NIRS）结合果蝇优化算法（FOA）改进随机森林（RF）的猪肉新鲜度检测模型。

以总挥发性盐基氮（TVB-N）质量分数作为猪肉新鲜度评价指标，首先采集不同贮藏阶段猪肉样品的近红外光谱数据

（扫描范围 1 000~1 800 nm），通过多元散射校正（MSC）与一阶导数结合的预处理方法消除光谱噪声与基线漂移；采用

FOA 优化 RF 的关键超参数（决策树数量、最小叶子节点样本数、最大特征数），构建果蝇优化算法改进随机森林（FOA-

RF）预测模型。［结果］在各类预测模型中，FOA-RF 模型对猪肉 TVB-N 质量分数的估算精度最高。该模型在预测集上

的均方根误差（RMSEP）仅为 1.582 mg/100 g；同时，其预测集相关系数（Rp）为 0.978，决定系数（R 2
p）为 0.956，残差预测偏

差（RPDp）也高达 4.723，显著优于其他对比模型。相比之下，传统偏最小二乘回归（PLSR）、未优化随机森林以及网格

搜索优化随机森林（GS-RF）等模型的综合预测性能均不及 FOA-RF 模型。［结论］该方法高效、精准，可满足肉类工业现

场快速检测需求。
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Abstract: ［［Objective］］ To achieve rapid, non-destructive, and high-precision monitoring of pork freshness, addressing the low efficiency, 

high destructiveness, and insufficient prediction accuracy of single models in conventional monitoring. ［［Methods］］ A pork freshness 

monitoring model was proposed based on near-infrared spectroscopy (NIRS) combined with random forest (RF) improved by the fruit fly 

optimization algorithm (FOA). With the total volatile basic nitrogen (TVB-N) content as the freshness indicator, near-infrared spectral data 

of pork samples at different storage stages are collected (scanning range: 1 000~1 800 nm). Spectral noise and baseline drift are eliminated 

via a preprocessing method combining multiplicative scatter correction (MSC) and first-derivative transformation. Then, FOA is employed 

to optimize key hyperparameters (number of decision trees, minimum leaf node sample size, and maximum number of features) of RF to 

construct the FOA-RF model. ［［Results］］ Among all the prediction models evaluated, the FOA-RF model demonstrates the highest accuracy 

for predicting pork TVB-N content. The preprocessing method combining MSC and first-derivative transformation effectively enhances the 

quality of the spectral data. The FOA-RF model achieves a root mean square error of prediction (RMSEP) of only 1.582 mg/100 g, a 

correlation coefficient of prediction (Rp) of 0.978, a coefficient of determination of prediction (R2
p) as high as 0.956, and a residual prediction 

deviation of prediction (RPDp) of 4.723, significantly outperforming the other comparative models. The overall predictive performance of 
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partial least squares regression (PLSR), the un-optimized RF model, and the grid search-optimized random forest (GS-RF) model is inferior 

to that of the FOA-RF model. ［［Conclusion］］ The method proposed in this study provides an efficient and accurate new approach for non-

destructive monitoring of pork freshness, meeting the demand for rapid testing in the meat industry.

Keywords: near-infrared spectroscopy; fruit fly optimization algorithm; random forest; pork freshness; total volatile basic nitrogen; non-

destructive monitoring

猪肉在中国居民膳食结构中占据重要地位，2024 年

猪肉消费量占肉类总消费量的 56.3%，其新鲜度直接关系

到消费者健康、食品安全与市场经济效益［1］。在屠宰、冷

链运输及零售等环节中，猪肉易受微生物繁殖、酶解作用

及环境温湿度变化的影响，导致蛋白质逐渐降解产生氨、

三甲胺等挥发性含氮化合物，进而引发品质劣变［2］。

在传统的猪肉新鲜度检测体系中，感官评定（如观察

色泽、嗅闻气味、检测弹性）与化学分析方法长期占据主

导地位。然而，前者易受主观判断影响，后者则存在流程

繁琐、耗时长、需破坏样本等局限，无法适应当前肉类产

业对“实时、无损、批量筛查”的技术要求［3］。在此背景下，

近红外光谱分析技术因其高效、无创伤及多指标同步检

测能力，逐渐发展为食品品质监控领域的有效手段［4］。该

技术通过检测样品中 C—H、O—H、N—H 等官能团的振

动吸收光谱，建立光谱信息与化学指标之间的关联模型，

从而实现品质的间接预测［5］。在肉类新鲜度检测中，该技

术已取得显著进展。例如，Leng 等［6］采用近红外光谱结

合 支 持 向 量 回 归（SVR）模 型 预 测 牛 肉 挥 发 性 盐 基 氮

（TVB-N）含量，但 SVR 模型对核函数参数敏感，且在小样

本数据集中泛化能力不足。王冬等［7］进一步指出，光谱预

处理方法与特征选择算法是提升模型精度的关键。在猪

肉检测方面，田文强等［8］采用了多指标融合方法，但未充

分考虑算法超参数优化；方瑶等［9］对比了不同预处理方法

对 TVB-N 含量预测的影响，却未深入优化预测模型结构。

常用的建模方法如偏最小二乘回归（PLSR）在处理高维光

谱数据时易受非线性干扰且对异常值敏感，预测精度常

受限［10-11］。随机森林（RF）通过构建多棵决策树来降低

过拟合风险，具有抗噪声能力强、适应非线性数据的优

势，已被逐步应用于肉类新鲜度预测［12］。然而，RF 的预

测性能高度依赖超参数（如决策树数量、最小叶子节点样

本数）的选择，传统经验调参或网格搜索（GS）方法存在效

率低、易陷入局部最优的问题［13］。

针对超参数优化难题，各类智能优化算法被广泛引

入。网格搜索计算量大，在多参数优化中易出现“维度灾

难”［14］；粒子群优化（PSO）算法虽收敛速度快，但易陷入

局部最优［15］。果蝇优化算法是 Pan 于 2011 年提出的一种

模拟果蝇觅食行为的全局优化算法，具有原理简单、参数

少、收敛速度快的特点，在函数优化和神经网络训练等领

域展现出优异性能［16］。将果蝇优化算法（FOA）用于 RF

超参数寻优，可有效规避 GS 的维度灾难与局部最优问

题，进一步提升模型预测精度与训练效率。Lan 等［17］采用

鲸 鱼 优 化 算 法 改 进 随 机 森 林 -AdaBoost 集 成（RF-

AdaBoost）模型，显著提升了预测精度；孙康慧等［18］基于

FOA 优化 LightGBM 算法，有效降低了预测误差。然而，

目前将 FOA 应用于近红外光谱结合 RF 的猪肉新鲜度检

测研究尚未见报道，相关技术体系仍有待完善。因此，研

究拟以猪肉 TVB-N 质量分数为核心检测指标，整合近红

外光谱技术与果蝇优化算法改进随机森林（FOA-RF）算

法，构建猪肉新鲜度无损检测模型，旨在为猪肉品质快速

检测提供新方法。

1　材料与方法

1.1　猪肉样品准备

选用市售新鲜猪背最长肌作为试验样本，原料来源

于 6 月龄健康商品猪（杜长大三元杂交品种）。样品采购

后于 1 h 内运送至实验室，全程采用 4 ℃保温箱贮藏。在

实验室中，剔除样本表面筋膜与脂肪组织后，沿垂直于肌

纤维方向将其切割为直径 40 mm、厚度 10 mm 的圆柱形

试样，共计制备 120 个有效样品。所有样品于 4 ℃冷藏环

境中保存，连续贮藏 7 d，每日随机抽取 15~20 个样本，同

步采集光谱数据并测定 TVB-N 质量分数，以确保覆盖

4.8~38.2 mg/100 g 范围内不同新鲜度等级的数据分布。

1.2　主要试剂与仪器

硼酸、氧化镁、盐酸、甲基红、亚甲基蓝：分析纯，国药

集团化学试剂有限公司；

超纯水：电阻率 18.2 MΩ・cm，实验室自制；

近红外光谱仪：SupNIR-2700 型，聚光科技（杭州）股

份有限公司；

凯氏定氮仪：K9840 型，海能未来技术集团股份有限

公司；

电子天平：GN1324 型，福州民桥精密仪器有限公司；

绞肉机：JRJ300-I型，九阳股份有限公司；

数显恒温水浴锅：HH-4 型，常州澳华仪器有限公司。

1.3　近红外光谱采集

光谱采集前进行仪器预热与校准：开启近红外光谱

仪，预热 30 min 以保证光源稳定性；采用标准白板（聚四

氟乙烯材质）进行基线校正，消除环境光与仪器漂移干

扰。将猪肉样品置于样品池中，保持温度 25 ℃（室温控
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制），从样品横截面采集光谱，每个样品重复扫描 3 次，取

平均光谱作为最终数据，以吸光度形式保存。光谱采集

过程中，每隔 10 个样品重新校正白板，确保数据一致性。

1.4　TVB-N质量分数测定

按 GB 5009.228—2016《食品安全国家标准  食品中

挥发性盐基氮的测定》中自动凯氏定氮仪法执行。每个

样品平行测定 3 次，取平均值作为最终 TVB-N 质量分数。

1.5　样本集划分

采用肯纳德—斯通（KS）算法将 112 组有效数据按 3∶

1 的比例划分为校正集（84 个样本）与预测集（28 个样本）。

KS 算法基于样本在光谱空间中的欧氏距离，优先选择具有

代表性的样本进入校正集，可确保校正集与预测集的分布

一致性，避免因样本分布不均导致的模型过拟合［19］。校正

集与预测集的 TVB-N质量分数统计结果见表 1。

由表 1 可知，校正集与预测集的 TVB-N 质量分数范

围、平均值与标准差均较为接近，变异系数均>40%，表明

样本覆盖了猪肉从新鲜（TVB-N<10 mg/100 g）到腐败

（TVB-N>30 mg/100 g）的全阶段，数据分布合理，可用于

模型构建与验证。

1.6　光谱预处理

近红外光谱在采集过程中易受多种因素干扰，包括

样品颗粒度、表面散射及仪器噪声等，因此需通过预处理

手段提升建模精度。研究评估多元散射校正（MSC）、标

准正态变量变换（SNV）、一阶导数和二阶导数 4 种常用预

处理方法的建模效果，并探讨组合预处理方式的优化潜

力。预处理效果通过信噪比（SNR）和校正集均方根误差

（RMSEC）两个指标进行量化：SNR 反映光谱噪声水平，

其 值 按 式（1）计 算 ，值 越 高 代 表 噪 声 抑 制 效 果 越 好 ；

RMSEC 体现预处理后数据与参考值的拟合程度，其值越

低表明相关性越强。

SNR = 10 × lg ( Ī 2

σ 2 )， （1）

式中：

SNR——信噪比；

Ī——吸光度平均值；

σ 2——吸光度的方差。

2　模型构建与优化

2.1　RF

RF 是基于 Bagging 集成策略的机器学习算法，通过

以下步骤构建：

（1） 自助采样（bootstrap）：从校正集中随机抽取 n 个

样本（有放回），构建 n 个决策树的训练集。

（2） 决策树构建：每个决策树采用随机特征选择（每

次分裂时仅考虑部分特征），以均方误差（MSE）最小化为

分裂准则，不进行剪枝。

（3） 集成预测：对于回归问题，RF 的输出为所有决策

树预测结果的平均值。

（4） 模型评估：采用袋外数据（OOB，未被采样的样

本）计算 OOB 误差，评估模型泛化能力。

RF 的关键超参数包括：决策树数量（n_estimators）、

最小叶子节点样本数（min_samples_leaf）、最大特征数

（max_features）。 超 参 数 的 选 择 直 接 影 响 模 型 性 能 ：

n_estimators 过少易导致欠拟合，过多则增加计算成本；

min_samples_leaf 过小易过拟合，过大则模型欠拟合 ；

max_features 影响特征选择的随机性，需合理设置以平衡

偏差与方差［20］。

2.2　FOA优化 RF模型

FOA 是模拟果蝇觅食行为的智能优化算法，其核心

思想是：果蝇通过嗅觉搜索食物（全局搜索），找到食物气

味源后通过视觉精确定位（局部搜索），最终实现最优解

寻优［21］。采用 FOA 优化 RF 的 3 个关键超参数，具体

步骤：

Step1：确定优化变量与搜索范围。根据文献调研与

预试验［22］，对 RF 模型的 3 个关键超参数进行了初步范围

测试。预试验结果表明，当决策树数量＜50 时模型欠拟

合，＞300 时计算成本显著增加而性能提升有限；最小叶

子节点样本数在 1~10 范围内模型表现稳定；最大特征数

在光谱特征数开根号 sqrt（d）到 d 之间可有效平衡模型的

偏差与方差。因此，最终确定超参数搜索范围决策树数

量 x1∈［50 300］，最小叶子节点样本数 x2∈［1 10］，最大特

征数 x3∈［sqrt（d） d］，d 为预处理后的光谱特征数（研究中

表  1　校正集与预测集猪肉样品 TVB-N质量统计

Table 1　TVB-N content statistics in pork samples of calibration and prediction sets

样本集

校正集

预测集

总集  

样本数

84

28

112

最大值/

（10-2 mg·g-1）

39.25

36.78

39.25

最小值/

（10-2 mg·g-1）

4.82

6.25

4.82

平均值/

（10-2 mg·g-1）

18.36

17.92

18.27

标准差/

（10-2 mg·g-1）

8.15

7.83

8.07

变异系数/%

44.4

43.7

44.2
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d=801，对应 1 000~1 800 nm 波长范围内的 801 个数据

点），故最大特征数 x3∈［29 801］。

Step2：FOA 参数设置。种群规模（population size）

30，最 大 迭 代 次 数（max iteration）100，初 始 搜 索 半 径

（initial step）10，嗅觉搜索步长衰减系数 0.9（每迭代 1 次，

步长乘 0.9，实现全局搜索向局部搜索过渡）。

Step3：适应度函数设计。以 RF 模型的 RMSEC 最小

化为目标，适应度函数如式（2）所示。

fRMSEC = 1
n ∑
i= 1

n

( )yi,meas - yi,pred
2
， （2）

式中：

fRMSEC——适应度函数；

n——训练集样本数量；

yi，meas——第 i个样本的 TVB-N 含量实际值；

yi，pred——第 i个样本的 TVB-N 含量预测值。

FOA 优化 RF 模型的算法流程：

步骤 1：初始化果蝇种群位置（每个个体对应一组 RF

超参数），随机生成 N 组超参数（x1，x2，x3），确保其在搜索

范围内。

步骤 2：计算每个个体的适应度值（RMSEC），筛选出

当前最优个体（适应度值最小）及其位置。

步骤 3：基于当前最优个体位置，进行嗅觉搜索。新

个体位置=当前最优位置＋随机步长×搜索半径。

步骤 4：计算新个体的适应度值，若新个体适应度优

于当前最优，则更新最优个体。

步骤 5：减小搜索半径，重复步骤 3~4，直至达到最大

迭代次数。

步骤 6：输出最优超参数组合，用于构建 FOA-RF

模型。

3　结果与分析

为验证 FOA-RF 模型的优越性，构建 6 种对比模型：

偏最小二乘回归（PLSR）模型：传统线性建模方法，采

用交叉验证（留一法）确定最优主成分数（最优主成分

数为 8）。

未优化 RF 模型：超参数采用 MATLAB 库默认值——

n_estimators为 100，min_samples_leaf为 1，max_features为

sqrt（d）（约 29）。

网格搜索优化 RF（GS-RF）模型：采用网格搜索优化

RF 超参数，搜索范围与 FOA 一致；网格步长：n_estimators

为 50（50，100，…，300），min_samples_leaf 为 1（1，2，…，

10），max_features为 30（29，59，…，801）；交叉验证折数 5。

贝叶斯优化（BO）RF 模型：初始点数量 30，最大迭代

次数 100。

鲸鱼优化算法（WOA）优化 RF 模型：种群规模 30，最

大迭代次数 100，收敛常数 a 从 2 线性递减至 0。

1D-CNN 模型：采用一维卷积神经网络，包含 2 个卷

积层（卷积核大小分别为 5 和 3，滤波器数量分别为 64 和

32）、最大池化层（池化大小为 2）、全连接层（128 个神经

元）和输出层。使用 Adam 优化器，学习率 0.001，批处理

大小 16，训练轮数 200。FOA-RF 与 BO-RF 和 WOA-RF 优

化过程收敛曲线对比图如图 1 所示。

通过对 3 种优化算法的收敛曲线进行综合分析可知：

在收敛速度与效率方面，FOA-RF 表现最为出色，它在迭

代 15 代后便迅速稳定于最优适应度值（1.623 mg/100 g），

展现出高效的全局部搜索能力；相比之下，BO-RF 收敛最

为缓慢，直至 25 代才趋于稳定，表明其在高维参数空间中

搜索效率较低；而 WOA-RF 虽在前期（前 12 代）收敛迅

速，但随后陷入平台期，表现出典型的早熟收敛现象。在

全局寻优能力上，FOA-RF 获得了三者中的最佳结果，证

明了其强大的全局优化能力和有效规避局部最优的性

能；WOA-RF 因后期开发能力不足而最终陷于局部最优；

BO-RF 则受限于其概率代理模型，在有限迭代内未找到

全局最优解。此外，在算法稳定性方面，FOA-RF 在收敛

后曲线最为平稳，波动极小；BO-RF 则在整个过程中出现

多次小幅振荡，显示出一定的搜索随机性。综上所述，

FOA 在收敛速度、全局寻优能力和稳定性方面均具备明

显优势。不同预处理方法的效果对比见表 2。

由表 2 可知，MSC+ 一阶导数组合预处理方法的

SNR 最高（35.2），RMSEC 最低（1.892 mg/100 g），校正集

R 2
p 最高（0.913），其效果显著优于单一预处理方法。因此，

选择 MSC+一阶导数作为最终光谱预处理方法。

3.1　不同模型的预测性能对比

4 种 模 型（PLSR、未 优 化  RF、GS-RF、FOA-RF、1D-

CNN、BO-RF 和 WOA-RF）的预测性能指标见表 3，预测值

与实测值的拟合图如图 2 所示。由表 3 和图 2 可知：

①  PLSR 模型性能最差。其预测集均方根误差（RMSEP）

高达 2.863 mg/100 g，R 2
p 仅为 0.726，相对分析误差（RPDp）

图 1　收敛曲线对比图

Figure 1　Comparison of convergence curves
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为 2.741（＜3.0）。说明线性模型难以捕捉猪肉光谱数据

与 TVB-N 质量分数间的复杂非线性关系，泛化能力不足。

②  未优化 RF 模型性能提升显著。相较于 PLSR，RF 模型

的 RMSEP 降低至 2.215 mg/100 g（降低了 22.6%），R 2
p 提升

至 0.812（提升了 11.8%），RPDp 达到 3.535（＞3.0）。说明

RF 的集成学习特性可有效处理非线性数据，但默认超参

数未达到最优，模型仍有优化空间。③  GS-RF 模型性能

进一步优化。通过 GS 优化超参数，GS-RF 的 RMSEP 降

至 1.826 mg/100 g，R 2
p 提升至 0.893，RPDp 达到 4.288。说

明超参数优化对 RF 模型性能至关重要，但 GS 的“暴力搜

索”特性导致其在高维参数空间中易陷入局部最优，优化

效 果 受 限 。 ④  ID-CNN 模 型 表 现 中 等 。 ID-CNN 的

RMSEP 为 1.945 mg/100 g，R 2
p 为 0.861，RPDp 为 4.025。其

性能优于未优化 RF 和 PLSR，但略低于优化后的 RF 变

体，表明卷积神经网络具有一定的非线性建模能力，但可

能受限于模型结构或训练策略。⑤  BO-RF 和 WOA-RF

模 型 性 能 优 异 。 BO-RF 的 RMSEP 为 1.735 mg/100 g，

R 2
p 为 0.925，RPDp 为 4.512；WOA-RF 的 RMSEP 为

1.769 mg/100 g，R 2
p 为 0.918，RPDp 为 4.425。两者均通过

智能优化算法提升了 RF 模型的性能，其中 BO-RF 的 R 2
p 和

RPDp 略高于 WOA-RF，显示贝叶斯优化在超参数调优中

的有效性。 ⑥  FOA-RF 模型性能最优：其 RMSEP 最低

（1.582 mg/100 g），Rp 和 R 2
p 最高（分别为 0.978 和 0.956），

RPDp 也 最 高（4.723）。 相 较 于 GS-RF，FOA-RF 的

RMSEP 降低 13.4%，R 2
p 提升 7.1%，RPDp 提升 10.2%。这

是因为果蝇优化算法（FOA）通过全局搜索与局部搜索相

结合的策略，可高效找到 RF 超参数的全局最优解，从而

最大化模型预测精度与泛化能力。

3.2　FOA-RF模型的稳定性验证

3.2.1　交叉验证　对校正集进行 5 折交叉验证，计算每次

交叉验证的 RMSEC 与 R 2
c，结果见表 4。5 折交叉验证的

RMSEC 平均值为 1.626 mg/100 g，标准差仅为 0.012，R 2
c 平

均值为 0.887，标准差为 0.003，表明模型对校正集数据的

拟合稳定性优良。

3.2.2　重复性试验　重复进行 10 次模型训练（每次训练

时 重 新 划 分 校 正 集 与 预 测 集 ，比 例 仍 为 3∶1），计 算

RMSEP 与 R 2
p 的平均值与标准差，结果见表 5。RMSEP 的

平均值为 1.593 mg/100 g，变异系数仅为 1.76%，R 2
p 的变异

系数为 0.52%，表明模型在不同样本划分下的预测性能稳

定，受随机因素影响小。

3.3　关键光谱特征分析

基于袋外数据均方误差减少量（mean decrease MSE）

计算的 FOA-RF 模型特征重要性得分如图 3 所示。

根据图 3 所示，特征重要性得分较高的关键波段主要

集中于 4 个区域：

（1）1 000~1 180 nm 波段：该区域主要对应 C—H 键的

三级泛音振动以及 O—H 键的伸缩振动，反映了猪肉中水

分和脂肪的初期变化。随着贮藏时间延长，水分蒸发和

脂肪氧化导致该区域光谱响应发生变化，使其成为 TVB-

N 质量分数预测的重要特征区域。

（2）1 180~1 230 nm 波段：该区域对应 C—H 伸缩振

动的第二泛音，主要来源于猪肉中脂肪与蛋白质所含的

表  2　不同光谱预处理方法效果对比

Table 2　Comparison of different spectral preprocessing 

methods

预处理方法

原始光谱

MSC

SNV

一阶导数

二阶导数

MSC+一阶导数

SNV+一阶导数

SNR

28.3

32.6

31.8

30.5

29.7

35.2

34.1

RMSEC/

（10-2 mg·g-1）

2.568

2.145

2.213

2.326

2.415

1.892

1.957

校正集决定

系数（R2
p）

0.852

0.887

0.879

0.868

0.859

0.913

0.905

表  3　猪肉 TVB-N质量分数预测性能对比

Table 3　Comparison of predictive performance for pork TVB-N content

模型

PLSR

RF

GS-RF

1D-CNN

BO-RF

WOA-RF

FOA-RF

校正集

RMSEC/（10-2 mg·g-1）

1.925

1.783

1.658

1.701

1.642

1.658

1.623

相关系数（Rc）

0.908

0.925

0.938

0.931

0.941

0.938

0.942

决定系数（R2
c）

0.824

0.855

0.880

0.867

0.885

0.880

0.887

预测集

RMSEP/（10-2 mg·g-1）

2.863

2.215

1.826

1.945

1.735

1.769

1.582

Rp

0.852

0.901

0.945

0.928

0.962

0.958

0.978

R2
p

0.726

0.812

0.893

0.861

0.925

0.918

0.956

RPDp

2.741

3.535

4.288

4.025

4.512

4.425

4.723
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甲基（—CH3）和亚甲基（—CH2）基团。随着贮藏时间延

长，脂肪氧化与蛋白质降解加剧，C—H 基团含量发生显

著变化，引起该波段吸光度明显波动，从而使其成为预测

TVB-N 质量分数的关键区域。

（3） 1 430~1 550 nm 波段：此区域为 N—H 伸缩振动

（来源于蛋白质氨基）与 O—H 弯曲振动（来源于水分）的

叠加吸收区。在猪肉腐败过程中，蛋白质降解产生的

TVB-N（如氨和胺类）中含有大量 N—H 基团，同时水分含

量因蒸发和微生物代谢作用发生变化，共同导致该波段

的光谱响应与 TVB-N 质量分数高度相关。

（4）1 680~1 750 nm 波段：该波段对应酰胺 Ⅰ 带的

C=O 伸缩振动，是蛋白质二级结构（如 α-螺旋、β-折叠）的

图 2　不同模型预测性能对比

Figure 2　Comparison of predictive performance among different models

表 4　FOA-RF模型 5折交叉验证结果

Table 4　Results of 5-fold cross-validation for the FOA-RF 

model

交叉验证折数

1

2

3

4

5

平均值

标准差

RMSEC/（10-2 mg·g-1）

1.635

1.618

1.642

1.609

1.627

1.626

0.012

R2
c

0.885

0.889

0.883

0.891

0.886

0.887

0.003

表 5　FOA-RF 模型重复性试验结果

Table 5　Repeated experiment results of the FOA-RF model

指标

平均值

标准差

变异系数/%

RMSEP/（10-2 mg·g-1）

1.593

0.028

1.76

R2
p

0.954

0.005

0.52
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特征吸收区域。蛋白质降解会破坏其原有二级结构，引

起 C=O 基团振动频率和强度改变，因而该波段可间接反

映 TVB-N 质量分数的变化。

上述关键波段的识别不仅从理论上验证了近红外光

谱技术用于猪肉 TVB-N 质量分数预测的可行性，也为后

续模型优化（如特征选择与波段筛选）提供了明确方向，

有助于简化模型结构、降低计算成本，并进一步提升检测

效率。

3.4　不同贮藏条件下模型的适用性验证

为验证 FOA-RF 模型在不同贮藏条件下的适用性，将

预测集按贮藏温度分为两组，分别计算模型在两组样品

中的预测性能，结果见表 6。

由表 6 可知，FOA-RF 模型在 4，0 ℃贮藏条件下的预

测性能均优良，两组的预测性能指标与总预测集接近，差

异较小（RMSEP 差值<0.1 mg/100 g，R 2
p 差值<0.01），表

明 FOA-RF 模型对贮藏温度变化的鲁棒性较强，可适用于

不同冷链条件下的猪肉新鲜度检测，满足肉类工业中多

样化的贮藏与运输场景需求。

4　结论

该研究提出了一种基于近红外光谱技术与果蝇优化

算法改进的随机森林模型，实现了猪肉挥发性盐基氮质

量分数的快速、无损和高精度检测。通过多元散射校正

与一阶导数组合预处理有效提升了光谱数据质量，结合

果蝇优化算法优化随机森林超参数，显著增强了模型预测

性能与泛化能力。研究结果表明，果蝇优化算法优化随机

森林模型在预测集上的均方根误差低至 1.582 mg/100 g，

决定系数高达 0.956，残差预测偏差达 4.723，优于传统偏

最小二乘回归、未优化随机森林和随机森林以及网格搜

索优化随机森林，且在 4，0 ℃贮藏条件下均表现出良好稳

定性与适用性。然而，该研究仍存在样本来源单一、贮藏

条件有限、光谱范围较窄及模型机理解释不足等局限性。

未来研究可围绕多样化样本与贮藏条件、多源信息融合、

模型轻量化与嵌入式应用、光谱机理深入解析以及智能

优化算法的进一步比较与集成等方面展开，以提升模型

的普适性、精度和实用价值。

参考文献

[1] 左晓佳 , 再努热・吐尔孙 . 肉品新鲜度评价及保鲜技术研究

进展[J]. 肉类研究 , 2023, 37(12): 69-75.

ZUO X J, TUERXUN Z. Research progress on evaluation of 

meat freshness and preservation technologies[J]. Meat 

Research, 2023, 37(12): 69-75.

[2] WILLIAMS P C, NORRIS K H. Near-infrared technology in 

the agricultural and food industries[M]. 2nd ed. Boca Raton: 

CRC Press, 2002.

[3] 刘瑜明 , 王巧华 , 陈远哲 , 等 . 猪肉理化指标的近红外光谱无

损检测[J]. 光谱学与光谱分析 , 2024, 44(5): 1 346-1 353.

LIU Y M, WANG Q H, CHEN Y Z, et al. Non-destructive 

detection of physicochemical indicators in pork using near-

infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 

2024, 44(5): 1 346-1 353.

[4] 周宇坤 , 陈孝敬 , 谢忠好 , 等 . 一种近红外光谱数据预处理组

合优化策略[J]. 光谱学与光谱分析 , 2025, 45(1): 52-58.

ZHOU Y K, CHEN X J, XIE Z H, et al. A combined 

optimization strategy for preprocessing near-infrared spectral 

data[J]. Spectroscopy and Spectral Analysis, 2025, 45(1): 52-58.

[5] GUO M Q, LIN H, WANG K Q, et al. Data fusion of near-

infrared and Raman spectroscopy: an innovative tool for non-

destructive prediction of the TVB-N content of salmon samples

[J]. Food Research International, 2024, 189: 114-135.

[6] LENG T, LI F, CHEN Y X, et al. Fast quantification of total 

volatile basic nitrogen (TVB-N) content in beef and pork by 

near-infrared spectroscopy: comparison of SVR and PLS model

[J]. Meat Science, 2021, 180: 108-129.

[7] 王冬 , 栾云霞 , 王欣然 , 等 . 近红外光谱无损分析肉类品质的

研究进展[J]. 肉类研究 , 2024, 38(5): 61-70.

WANG D, LUAN Y X, WANG X R, et al. Research progress in 

non-destructive analysis of meat quality using near-infrared 

spectroscopy[J]. Meat Research, 2024, 38(5): 61-70.

[8] 田文强 , 王巧华 , 徐步云 , 等 . 基于近红外光谱的腌制期咸鸭

蛋理化指标无损检测[J]. 食品科学 , 2023, 44(2): 319-326.

TIAN W Q, WANG Q H, XU B Y, et al. Non-destructive 

图 3　FOA-RF 模型特征重要性得分

Figure 3　Feature importance scores of the FOA-RF model

表  6　FOA-RF模型在不同贮藏条件下的预测性能

Table 6　Predictive performance of the FOA-RF model 

under different storage conditions

贮藏温

度/℃
4

0

平均值

样本数

14

14

RMSEP/

（10-2 mg·g-1）

1.625

1.538

1.582

Rp

0.975

0.981

0.978

R2
p

0.953

0.962

0.956

RPDp

4.682

4.765

4.723

57



安全与检测  SAFETY & INSPECTION 总第  290 期  | 2025 年  12 月  |

detection of physicochemical indicators of salted duck eggs 

during salting using near-infrared spectroscopy[J]. Food 

Science, 2023, 44(2): 319-326.

[9] 方瑶 , 谢天铧 , 郭渭 , 等 . 基于近红外光谱的金鲳鱼新鲜度快

速检测技术[J]. 江苏农业学报 , 2021, 37(1): 213-218.

FANG Y, XIE T H, GUO W, et al. Rapid detection technique for 

freshness of golden pompano based on near-infrared 

spectroscopy[J]. Jiangsu Journal of Agricultural Sciences, 2021, 

37(1): 213-218.

[10] 张雷蕾 , 李永玉 , 彭彦昆 , 等 .  基于高光谱成像技术的猪肉新

鲜度评价[J].  农业工程学报 , 2012, 28(7): 254-259.

ZHANG L L, LI Y Y, PENG Y K, et al. Determination of pork 

freshness attributes by hyperspectral imaging technique[J]. 

Transactions of the Chinese Society of Agricultural 

Engineering, 2012, 28(7): 254-259.

[11] RONG L, WANG Y R. A fresh-cut papaya freshness prediction 

model based on partial least squares regression and support 

vector machine regression[J]. Heliyon, 2024, 10(9): 11-24.

[12] 任智磊 , 赵霄霄 , 冯景 , 等 . 基于近红外光谱结合网格搜索—

随机森林—自适应提升算法无损检测牛肉新鲜度 [J]. 肉类

研究 , 2025, 39(11): 1-8.

REN Z L, ZHAO X X, FENG J, et al. Non-destructive 

detection of beef freshness based on near-infrared 

spectroscopy combined with grid search-random forest-

adaboost algorithm[J]. Meat Research, 2025, 39(11): 1-8.

[13] CAI J, CHEN Q F, WAN X H, et al. Determination of total 

volatile basic nitrogen (TVB-N) content and Warner–Bratzler 

shear force (WBSF) in pork using Fourier transform near 

infrared (FT-NIR) spectroscopy[J]. Food Chemistry, 2011, 126

(3): 1 354-1 360.

[14] QU F F, REN D, HE Y, et al. Predicting pork freshness using 

multi-index statistical information fusion method based on 

near infrared spectroscopy[J]. Meat Science, 2018, 146: 59-67.

[15] PROBST P, WRIGHT M N, BOULESTEIX A L. 

Hyperparameters and tuning strategies for random forest[J]. 

Wiley Interdisciplinary Reviews: Data Mining and Knowledge 

Discovery, 2019, 9(3): 1 301-1 318.

[16] PAN W T. A new fruit fly optimization algorithm: taking the 

financial distress model as an example[J]. Knowledge-Based 

Systems, 2012, 26: 69-74.

[17] LAN C F, SONG B W, ZHANG L, et al. State prediction of 

hydroturbine based on WOA-RF-adaboost[J]. Energy Reports, 

2022, 8: 13 129-13 137.

[18] 孙康慧 , 肖安 , 夏侯杰 . 基于  LightGBM 机器学习算法的江

西气温短期预报模型研究 [J]. 高原气象 , 2024, 43(6): 1 520-

1 535.

SUN K H, XIAO A, XIA H J. Study on short-term temperature 

forecast model in Jiangxi province based on LightGBM 

machine learning algorithm[J]. Plateau Meteorology, 2024, 43

(6): 1 520-1 535.

[19] 刘艳群 , 肖付刚 , 陈彩虹 . 基于随机森林回归模型的小麦粉

灰分含量快速测定[J]. 食品与机械 , 2024, 40(9): 79-83.

LIU Y Q, XIAO F G, CHEN C H. Study on rapid 

determination of ash content in wheat flour based on random 

forest regression model[J]. Food & Machinery, 2024, 40(9): 

79-83.

[20] 张清清 . 基于 FOA-RF 模型下煤与瓦斯突出智能预警系统研

究[J]. 陕西煤炭 , 2024, 43(7): 152-155.

ZHANG Q Q. Research on intelligent early warning system 

for coal and gas outburst based on foa-rf model[J]. Shaanxi 

Coal, 2024, 43(7): 152-155.

[21] SHENG W, BAO Y. Fruit fly optimization algorithm based 

fractional order fuzzy-PID controller for electronic throttle

[C]// Nonlinear Dynamics, 2013, 73(1/2): 611-619.

[22] PUJAR P, LAVANYA M. Power factor improvement in IEEE-

33 radial distribution systems using fruit fly algorithm 

compared with bat algorithm by optimizing the DG size[C]// 

2024 3rd International Conference on Automation, Computing 

and Renewable Systems (ICACRS). Pudukkottai, India: [s.n.], 

2024: 349-353.

58


