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负载葡萄籽多酚油茶籽油纳米乳液的制备及表征
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摘要：［目的］开发高稳定性的油茶籽油纳米乳液体系，用于负载葡萄籽多酚（GSP），提升其抗氧化性与溶解稳定性。［方

法］基于伪三元相图法优化配方（m 油相∶m 表面活性剂相为 8∶2、m 吐温 80∶m 司盘 80 为 5∶5、无水乙醇为助表面活性剂，Km=4），通过

Zeta 电位、低场核磁共振表征乳液稳定性及水分分布，并评价其抗氧化活性。［结果］所得 W/O 型纳米乳液粒径为

（326.5±2.7） nm，Zeta 电位绝对值为（46.4±0.2） mV，PDI 为 0.238，电导率为 4.8 μS/cm。负载 1.5% GSP 时，自由水占

比降至 17.21%，DPPH 自由基与 ABTS 自由基清除率分别为 82.69%，71.18%，经离心（10 000 r/min）、高温（90 ℃）、低温

（-4 ℃）及 30 d 贮藏后无分层，透光率>95.8%。［结论］该体系兼具高生物活性保留率与长效稳定性。
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Abstract: ［［Objective］］ To develop a highly stable camellia oil nanoemulsion system for loading grape seed polyphenol (GSP) to enhance its 

antioxidant property and solubility stability. ［［Methods］］ The formula is optimized based on the pseudo-ternary phase diagram method (moil phase∶

msurfactant phase=8∶2, mTween 80∶mSpan 80=5∶5, absolute ethanol is used as the cosurfactant, and Km=4). The emulsion stability and water 

distribution are characterized by Zeta potential and low-field nuclear magnetic resonance, and its antioxidant activity is evaluated. ［［Results］］ 

The obtained W/O nanoemulsion has a particle size of (326.5±2.7) nm, an absolute value of Zeta potential of (46.4±0.2) mV, a polydispersity 

index (PDI) of 0.238, and an electrical conductivity of 4.8 μS/cm. When loaded with 1.5% GSP, the proportion of free water decreases to 

17.21%, and the scavenging rates of DPPH free radicals and ABTS free radicals are 82.69% and 71.18%, respectively. After centrifugation 

(10 000 r/min), high temperature (90 ℃), low temperature (−4 ℃) and 30-day storage, there is no stratification, and the light transmittance is >
95.8%. ［［Conclusion］］ This system combines high biological activity retention with long-lasting stability.
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葡萄籽多酚（GSP）是一种从葡萄籽中提取出来的多

种酚类物质的总称，主要成分为原花青素和白藜芦醇［1］，

作为一种高效低毒的天然抗氧化剂被广泛应用于食品保

鲜中［2］。GSP 的应用受其分子结构特性与外界环境的双

重制约，稳定性问题突出：从分子结构看，GSP 分子含大

量酚羟基（—OH），该基团具有强还原性，易与氧气反应
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生成醌类物质，导致其活性丧失；同时，分子中的共轭双

键结构对光敏感，易发生光致异构化或降解，进一步破坏

活性结构。从外界影响因素看，高温会加速 GSP 分子运

动，促进酚羟基氧化与分子间聚合，导致其溶解度下降；

pH 值偏离 4.0~6.0 时，会打破酚羟基的解离平衡，严重限

制了其生物活性的充分发挥［3］。因此，开发能够有效改善

GSP 溶解性和稳定性的递送体系，成为突破其应用瓶颈

的关键。

纳米乳液作为一种由油相、水相、表面活性剂及助表

面活性剂组成的热力学稳定分散体系，具有粒径均一（通

常＜500 nm）、界面张力低、生物相容性好等特点，被广泛

用于包载疏水性功能成分，以提高其分散性、稳定性及生

物利用度［4-5］。其中，油相作为纳米乳液的核心组成部

分，其化学稳定性、营养特性及与功能成分的协同作用可

直接影响体系性能，因此选择适宜油相是解决 GSP 稳定

性问题的关键。目前，已有研究采用不同油脂作为油相

制备纳米乳液负载多酚类物质，但仍存在部分油脂基质

的营养特性与抗氧化协同作用不足以及负载多酚后体系

稳定性和保留率不高等问题。

油茶籽油是经油茶的籽加工提取而来的一种极具营

养的高端保健食用油［6］，其作为一种富含油酸及多不饱和

脂肪酸的功能性油脂［7］，具有优异的营养特性和抗氧化能

力，是构建功能脂质基质的理想原料［8］。油茶籽油作为构

建该递送体系油相的优选原料，其优势显著区别于大豆

油、葵花籽油等常见油脂：①  油茶籽油中含不饱和脂肪酸

高达 90%［9］，其中，油酸占 74%~87%，亚油酸占 5%~13%，

其油酸含量远高于其他植物油，这也是油茶籽油区别于

其他植物油的基本特征［10］，且单不饱和脂肪酸的化学稳

定性显著优于亚油酸等多不饱和脂肪酸（后者因含多个

双键易发生氧化，引发油相劣变），可以降低油相对 GSP

的负面影响；②  油茶籽油除油酸外，还富含维生素 E、植

物甾醇等天然抗氧化成分，这些成分可与 GSP 形成抗氧

化协同效应；③  油茶籽油在中国南方地区有长期食用历

史，经食品安全评估证实其安全性，且符合食品、药品领

域对载体原料的天然性要求。然而，目前以油茶籽油为

油相制备纳米乳液负载 GSP 的研究尚未进行深入报道，

其配方优化、稳定性调控仍需系统探究。

研究拟构建一种高稳定性的油茶籽油纳米乳液体

系，以解决 GSP 在油脂体系中溶解性差、稳定性低的问

题。通过伪三元相图法筛选最优配方，优化表面活性剂

复配比例、助表面活性剂类型及比例，提升乳液稳定

性［11-12］；并通过负载 GSP，利用油茶籽油与 GSP 的协同作

用增强其抗氧化活性。同时，通过表征乳液的粒径、Zeta

电位、水分分布及在极端条件（离心、高低温、长期贮藏）

下的稳定性，验证该体系对 GSP 的保护效果［13］。以期为

改善多酚类功能性成分的应用性能提供新型载体，为其

在食品保鲜、功能食品及医药领域的应用提供依据。

1　材料与方法
1.1　材料与仪器

1.1.1　材料与试剂　

油茶籽油毛油：贵州布依丽吉油茶实业有限公司；

1，2-丙二醇、吐温 20、吐温 80、司盘 80、异丙醇、无水

乙醇、正丁醇：分析纯，天津市光复科技发展有限公司；

ABTS：天津市众联化学试剂有限公司；

1，1-二苯基苦基苯肼（DPPH）：飞科生物科技有限公司；

葡萄籽多酚：纯度≥95%，天津市尖峰天然产物研究

开发有限公司。

1.1.2　仪器与设备　

恒温加热磁力搅拌器：HO1-1C 型，上海梅颖浦仪器

仪表制造有限公司；

纳米粒度电位仪：（Malvern）-Zetasizer Nano S90 型，

上海思百吉仪器系统有限公司；

台式低速离心机：TDZ5-WS 型，湖南湘仪实验室仪器

开发有限公司；

紫外—可见光光度计：UV-3500 型，上海美谱达仪器

有限公司；

激光共聚焦扫描显微镜：TCSSP5型，德国 Leica公司；

核磁共振成像仪：NMI20 型，上海纽迈电子科技有限

公司。

1.2　试验方法

1.2.1　纳米乳液的制备　

（1） 表面活性剂的筛选：以油茶籽油为油相，超纯水

为水相，通过改变表面活性剂相，选择吐温 20（HLB 值

16.7）、吐温 80（HLB 值 15）、蔗糖脂肪酸酯（HLB 值 15）、辛

癸酸甘油酯（HLB 值 9）和司盘 80（HLB 值 4.3）作为表面活

性剂。油茶籽油和表面活性剂分别按质量比 1∶9，2∶8，3∶

7，4∶6，5∶5，6∶4，7∶3，8∶2，9∶1（按照 Shah 法）配制混合相。

在磁力搅拌器下，向混合相中逐次滴加纯水溶液，低速、

低频率搅拌（1 500 r/min）。混合系统由于纯净水的加入

出现了由浊变清的现象（随着搅拌时间的延长，最终变

清），30 s 内无浑浊现象。确保无浑浊现象后，继续加入纯

净水，直至出现浑浊现象，观察混合体系随搅拌时间的延

长由浑浊到澄清的过程，记录此时的加水量，计算各组分

（油、表面活性剂、水）的质量分数。

（2） 伪三元相图的构建：油相为油茶籽油，表面活性

剂相为混合表面活性剂相（包括助表面活性剂），水相为

纯净水。记录达到临界点的 9 个顶点（1∶9，2∶8，3∶7，4∶6，

5∶5，6∶4，7∶3，8∶2，9∶1），通过 Origin 软件计算临界点时各

组分质量分数，绘制伪三元相图，并计算纳米乳液面积，

保留两位小数，面积越大，说明该配比油茶籽油纳米乳液

的效果越好，在该配比下越适宜。

（3） 表面活性剂的筛选：以吐温 80 和司盘 80 配制不

同 HLB 值的混合表面活性剂，以调整乳液的亲水亲油平

衡值。制备不同质量比的吐温 80-司盘 80（8∶2，7∶3，6∶
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4，5∶5），绘制伪三元相图，通过 Origin 软件计算不同比例

吐温 80 和司盘 80 的纳米乳液区域面积，选择面积最大的

吐温 80-司盘 80 质量比进行后续试验。

（4） 助表面活性剂的筛选：在较优表面活性剂的基础

上，以无水乙醇、丙三醇、正丁醇、异丙醇为助表面活性

剂，制备油茶籽油纳米乳液。绘制伪三元相图，通过

Origin 软件计算不同助表面活性剂的纳米乳液区域面积，

选择面积最大的助表面活性剂比例进行后续试验。

（5） Km 值的筛选：Km 值为表面活性剂相与助表面

活性剂的比例。在较优助表面活性剂的基础上，Km 值分

别取 2，3，4，5，制备油茶籽油纳米乳液，绘制伪三元相图，

通过 Origin 软件计算不同 Km 值的纳米乳液区域面积，选

择面积最大的 Km 值为最优值。

1.2.2　负载 GSP 纳米乳液的制备　以油茶籽油为油相，

负载不同浓度（0，0.5%，1.0%，1.5%，2.0%，2.5%）GSP 水溶

液为水相，表面活性剂为吐温 80-司盘 80（质量比 1∶1），

助表面活性剂为无水乙醇，Km 为 4，制备负载不同浓度葡

萄籽多酚的油茶籽油纳米乳液。

1.2.3　纳米乳液类型检测　取 20 g 油茶籽油纳米乳液，

用电导率仪测定电导率初步判断纳米乳液类型：电导率

高（>100 μS/cm），说明水相连续，初步判断为 O/W 型纳

米乳液；电导率低（＜10 μS/cm），说明油相连续，初步判断

为 W/O 型纳米乳液。通过稀释法进一步验证纳米乳液类

型，将纳米乳液用油/水稀释，在水中易扩散则为 O/W 型，

反之则为 W/O 型。

1.2.4　电位粒径测定　将 W/O 纳米乳液用去离子水以

1 000 倍体积进行稀释，用纳米粒度电位仪测定 W/O 纳米

乳液的 PDI分散系数、Zeta电位和粒径［14］。

1.2.5　水分分布测定　参照 Kang 等［15］的方法并修改。

采用低场核磁共振成像分析仪测定负载不同浓度 GSP 纳

米乳液的水分分布。称取 1.5 g 负载不同浓度（0，0.5%，

1.0%，1.5%，2.0%，2.5%）GSP 纳米乳液于 2 mL NMR 管

中，使用 CPMG 脉冲序列进行测定。TW 为 1 000 ms，TE

为 0.250 ms，NECH 为 2 000，扫描次数为 8。

1.2.6　 DPPH 自 由 基 清 除 能 力 测 定　 配 制 浓 度 为

0.2 mmol/L DPPH-乙醇溶液，取 200 μL 负载不同浓度

（0，0.5%，1.0%，1.5%，2.0%，2.5%）GSP 的纳米乳液和油茶

籽油原油，与 2 mL DPPH 乙醇溶液充分混匀，避光反应

30 min，5 000 r/min 离心 10 min，测定 517 nm 处上清液的

吸光度，用无水乙醇作对照，按式（1）计算 DPPH 自由基清

除率。

R= (1 - A- A 1

A 0 )× 100%， （1）

式中：

R——DPPH 自由基清除率，%；

A——样品溶液的吸光度；

A1——乙醇溶液代替 DPPH-乙醇溶液的吸光度；

A0——蒸馏水代替样品溶液的吸光度。

1.2.7　ABTS 自由基清除能力测定　取 300 μL 负载不同

浓度（0，0.5%，1.0%，1.5%，2.0%，2.5%）GSP 的油茶籽油乳

液和油茶籽油原油，加入 6 mL ABTS工作液，混匀，室温避

光静置 10 min，测定 734 nm处吸光度，以 300 μL无水乙醇代

替负载不同浓度 GSP的乳液，以 6 mL蒸馏水代替 ABTS+工

作液，按式（2）计算样液的ABTS自由基清除率。

W= (1 -
B i - B j

B c )× 100%， （2）

式中：

W——ABTS 自由基清除率，%；

Bi——样品溶液的吸光度；

Bc——乙醇溶液代替乳液的吸光度；

Bj——蒸馏水代替样品溶液的吸光度。

1.2.8　离心稳定性测定　取 10 mL 负载 1.5% GSP 的油茶

籽油纳米乳液，分别于 4 000，6 000，8 000，10 000 r/min 下

离心 5 min，观察是否出现分层和浑浊现象；测定 600 nm

处纳米乳液离心前后吸光度，并计算透光率。以纳米乳

液分层与否、浑浊与否和透光率为评价指标［16］。按式（3）

计算透光率。透光率>90% 表明微乳稳定性良好。

T= C 0

C 1
× 100%， （3）

式中：

T——透光率，%；

C0——微乳处理前吸光度；

C1——微乳处理后吸光度。

1.2.9　热稳定性测定　取 10 mL 负载 1.5% GSP 的油茶籽

油纳米乳液，分别于 50，70，90 ℃下水浴 30 min，观察经热

处理纳米乳液的形态外观，是否出现分层和浑浊现象，并

按式（3）计算透光率。

1.2.10　冷冻稳定性测定　取 10 mL 负载 1.5% GSP 的油

茶籽油纳米乳液，分别于 4，0，-4 ℃下贮藏 12 h，观察经

冷冻处理纳米乳液的形态外观，是否出现分层和浑浊现

象，并按式（3）计算透光率。

1.2.11　贮藏稳定性测定　取 10 mL 负载 1.5% GSP 的油

茶籽油纳米乳液，常温下分别贮藏 0，5，10，15，20，25，

30 d，观察处理后微乳的形态外观，有无浑浊、分层等现

象，并按式（3）计算透光率［17］。

1.2.12　数据统计与分析　所有试验均重复 3 次以上。采

用 SPSS 17.0 软件进行相关性分析及组间比较 ，采用

Origin 2021b 软件进行数据处理，结果以平均值±标准差

表示，组间差异采用 ANOVA 检验，显著性水平设定为

P<0.05。

2　结果与讨论
2.1　纳米乳液最优配方的确定

根据图 1，最终确定吐温 80-司盘 80（质量比 5∶5）复

配体系、无水乙醇为助表面活性剂、Km=4，此时纳米乳
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液区域面积最大（18.29%），显著优于单一表面活性剂或

其他配比。这是因为 HLB 值往往决定乳液的乳化特性，

司盘类 HLB 值较低（亲油性强），吐温类 HLB 值较高（亲

水性强），两者复配可通过调控 HLB 值以匹配油相需求，

形成更稳定的界面膜，协同扩大乳液稳定区；助表面活性

剂可通过嵌入表面活性剂分子之间，降低界面膜的张力，

增加界面流动性，增大分子之间的排斥力，以提高纳米乳

液的乳化效果和稳定性，起到增溶的作用，无水乙醇的增

溶能力略低于正丁醇，但其低刺激性更适合应用于食品/

药品领域；Km 值可以反映体系中助表面活性剂含量，在

Km 值为 4 时可平衡界面张力与体系黏度，可避免过量导

致的颗粒聚集。

2.2　负载 GSP纳米乳液的形态表征

根据伪三元相图趋势，当混合表面活性剂与油茶籽

油质量比为 8∶2 时，纳米乳液面积在体系中最大，当质量

比>8∶2 时，纳米乳液面积变小。以混合表面活性剂和精

油质量比为 6∶4，作为乳液类型的判断依据，此时，水的体

积比为 3（体积接近临界体积，临界体积时体系为浑浊）。

因此，较优纳米乳液的 m 水相∶m 油相∶m 混合表面活性剂为 3∶4∶6。

最佳油茶籽油纳米乳液的配方为表面活性剂为司盘

80-吐温 80（质量比 5∶5），助表面活性剂为无水乙醇，Km

值为 4，m 表面活性剂∶m 油相=8∶2。在此基础上，分别以浓度为

0，0.5%，1.0%，1.5%，2.0%，2.5% 的葡萄籽多酚水溶液作

为水相，按 m 水相∶m 油相∶m 混合表面活性剂为 3∶4∶6 负载不同 GSP

水溶液。结果显示，随着葡萄籽多酚水溶液浓度的递增，

乳液颜色呈现从浅黄色到深红色的连续梯度加深，这直

观反映出在油茶籽油纳米乳液的配方体系下，葡萄籽多

酚在油茶籽油纳米乳液中的负载量随其水溶液浓度增加

而提升，且体系具有良好的分散稳定性，颜色变化可作为

其负载浓度差异的直观表征。

2.3　纳米乳液类型评价

用电导率仪测定纳米乳液的电导率为 4.8 μS/cm＜
10 μS/cm，说明油相连续，初步判断为 W/O 型纳米乳液。

取 2 mL 油茶籽油纳米乳液分别滴加到等体积的水和油

中，观察其扩散状态。

油茶籽油纳米乳液在水中不能迅速扩散，呈现乳液

大面积聚集在水中的状态，而在油中可以迅速扩散至均

匀状态［18］。因此，结合电导率仪的测定判断所制备油茶

籽油纳米乳液的乳液类型为 W/O 型。

2.4　电位粒径分析

纳米乳液的平均粒径与 Zeta 电位是决定其理化特性

的关键参数。其中，较小的平均粒径可显著增加油水相

分离难度，而 Zeta 电位绝对值可反映液滴表面电荷特性。

通常粒径越小且 Zeta 电位绝对值越高，乳液的稳定性越

强［19］。由图 2 可知，油茶籽油纳米乳液电位的绝对值为

（46.4±0.2） mV>30 mV，具 有 良 好 的 稳 定 性 ；粒 径 为

（326.5±2.7） nm＜500 nm，符合纳米乳液粒径要求；分散

系数 PDI 为 0.238＜0.3，说明该体系较为均一，颗粒尺寸

图 1　最优比例的伪三元相图

Figure 1　Pseudo-ternary phase diagrams for optimal proportions
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分布较窄，具有良好的稳定性［20］。这是因为复配表面活

性剂（吐温 80-司盘 80）可以通过降低界面张力形成致密

界面膜，阻止液滴聚集，且较高的 Zeta 电位绝对值可以产

生强静电斥力，进一步抑制颗粒聚集，保证体系均一性。

2.5　水分分布特性

横向弛豫时间（T2）是核磁共振（NMR）中反映水分子

运动状态的参数，T2 值越小，水分子运动越受限（如结合

水）；T2值越大，水分子自由度越高（如自由水）。其中结合

水（A21）的 T2 值通常为 1~10 ms，占总水分比例较低（5%~

10%）。不易流动水（A22）的 T2 值为 10~100 ms，流动性受

限但可以参与物质扩散。自由水（A23）为存在于连续相中

的自由态水分，T2值>100 ms，流动性最高，易受外界环境

影响［21］。

由图 3 和图 4 可知，GSP 浓度对纳米乳液水分分布的

影响呈现非线性调控效应。当 GSP 浓度从 0% 增至 1.5%

时，自由水占比逐步降低，而不易流动水提升至 76.55%；

当葡 GSP 浓度为 0.5% 时，自由水占比最低，结合水达峰

值 7.19%；当 GSP 浓 度 >2% 时 ，自 由 水 占 比 激 增 至

32.65%，提示界面吸附饱和引发 Ostwald 熟化导致膜破

裂［22］。这可能是因为适量 GSP（1.5%）可与表面活性剂、

水分子形成氢键，增强水合作用，将自由水转化为不易流

动水，提升体系稳定性，而过量的 GSP 会破坏界面膜结

构，导致液滴破裂，自由水释放，破坏乳液稳定性。因此，

1.5% 为 最 佳 GSP 负 载 浓 度 ，既 可 实 现 自 由 水 最 小 化

（17.21%），还避免了过量多酚突破界面吸附，平衡界面柔

性与刚性，发挥多酚抗氧化协同作用。

2.6　抗氧化能力评价

DPPH 自由基清除率反映抗氧化剂的氢供体能力。

由图 5 可知，随着 GSP 浓度从 0% 增至 2.5%，DPPH 自由基

清除率显著提升，尤其在 1.5% 之前增速最快。这可能归

因于 GSP 分子中的酚羟基作为氢供体，能够通过提供氢

原子有效中和 DPPH 自由基，使其还原褪色。同时，纳米

乳液作为递送载体，将疏水性的 GSP 包封并分散为纳米

尺度的液滴，极大地增大了与反应介质的接触比表面积，

从而显著提高了多酚与自由基的碰撞频率与反应效

率［23］，但 GSP 浓度>1.5% 后 DPPH 自由基清除率增速放

图 3　负载不同浓度 GSP 油茶籽油纳米乳液水分

分布瀑布图

Figure 3　Waterfall diagram of moisture distribution of 

camellia oil nanoemulsions loaded with different 

concentrations of GSP

图 4　负载不同浓度 GSP 油茶籽油纳米乳液水分

分布相对占比图

Figure 4　Relative proportions of moisture distribution of 

camellia oil nanoemulsions loaded with different 

concentrations of GSP

图 2　油茶籽油纳米乳液粒径电位图

Figure 2　Particle size potential of camellia oil nanoemulsion
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缓，可能是多酚分子间发生聚集或纳米乳液载体的饱和

效应导致活性位点利用率下降［24］。

ABTS 自由基清除率与电子转移能力相关。由图 5

可知，ABTS 自由基清除率从 15.75%（0%）升至 76.27%

（2.5%），趋势与 DPPH 自由基的相似但绝对值较低。这可

能源于两种自由基的反应机制不同：ABTS 需要抗氧化剂

提供电子直接还原阳离子自由基，而 GSP 对氢供体机制

更敏感。此外，ABTS 反应体系的 pH（通常为 7.4）可能影

响多酚的离解状态，导致活性差异。在 1.5% 浓度后自由

基清除率增速趋缓，可能与纳米乳液中多酚的释放动力

学受限有关［25］。

DPPH 自由基和 ABTS 自由基清除率与 GSP 浓度均

呈现剂量—效应关系，符合多数多酚类物质的抗氧化特

性，高浓度下自由基清除率增速放缓，可能受载体负载上

限或分子间相互作用影响。同时 DPPH 自由基清除率普

遍高于 ABTS 自由基，可能与 GSP 中羟基苯甲酸类成分更

擅长提供氢原子有关［26］。负载 GSP 纳米乳液的抗氧化活

性显著依赖浓度，且 DPPH 自由基与 ABTS 自由基清除机

制差异导致结果分化。因此，选择负载浓度为 1.5% 的

GSP 油茶籽油纳米乳液可达到平衡抗氧化活性与成本的

共同考虑。

2.7　稳定性分析

2.7.1　离心稳定性　由表 1 可知，负载 GSP 的油茶籽油纳

米乳液在 10 000 r/min 下仍无分层或浑浊现象，透光率>
95%，表明体系高度均一。油茶籽油纳米乳液采用吐温

80/司盘 80 复配表面活性剂（HLB 值 10.2），形成的界面膜

具 有 高 机 械 强 度 ，有 效 抵 抗 离 心 剪 切 导 致 的 液 滴 破

坏［27-28］。由于油茶籽油富含油酸（约 75%），其单不饱和

长链结构可增强油相与表面活性剂烷基链的疏水相互作

用，降低奥斯特瓦尔德熟化速率，使界面膜结构更为稳

固 ，从 而 有 效 抑 制 了 液 滴 在 离 心 过 程 中 的 沉 降 或

聚集［18］。

2.7.2　热稳定性　由表 2 可知，经 90 ℃高温处理后，乳液

无分层，透光率>95%，仅轻微下降。这可能因为复配表

面活性剂的高界面膜稳定性可抵抗高温引起的液滴热运

动增强，且油茶籽油自身耐高温氧化的特性，减少了油相

降解对乳液结构的破坏。同时透光率随温度升高呈线性

下降，可能与液滴热运动增强导致的轻微聚集有关，但未

破坏整体均一性［29］。

2.7.3　低温稳定性　由表 3 可知，该纳米乳液在-4 ℃下

仍无分层或浑浊现象，透光率仅下降 4.2%，表明体系具有

较好的冷冻稳定性。透光率下降可能与冰晶形成导致的

轻微光散射增强有关。后续研究可通过添加低浓度抗冻

剂（如 0.5% 甘油）进一步提升-20 ℃深冻稳定性，并开展

冻融循环试验评估其长期贮藏潜力［30］。

2.7.4　贮藏稳定性　由表 4 可知，负载 GSP 的油茶籽油纳

米乳液在贮藏 30 d 内未出现分层或浑浊现象，透光率仅

下降 0.7%，表明体系具有优异的长期贮藏稳定性。这是

因为热力学稳定的纳米乳液结构、低自由水含量及油茶

籽油与 GSP 的抗氧化协同作用，共同抑制了液滴聚集、氧

化降解等老化过程。

表 1　纳米乳液在不同转速下的离心稳定性

Table 1　Centrifugal stability of nanoemulsions at different 

rotational speeds

离心转速/（r·min-1）

4 000

6 000

8 000

10 000

是否分层

否

否

否

否

是否浑浊

否

否

否

否

透光率/%

100.0

99.2

97.5

96.8

表 2　纳米乳液在不同温度下的热稳定性

Table 2　Thermal stability of nanoemulsions at different 

temperatures

温度/℃
50

70

90

是否分层

否

否

否

是否浑浊

否

否

否

透光率/%

99.7

98.5

96.8

表 3　纳米乳液在不同温度下的低温稳定性

Table 3　Low temperature stability of nanoemulsions at 

different temperatures

温度/℃
4

0

-4

是否分层

否

否

否

是否浑浊

否

否

否

透光率/%

98.3

96.5

95.8

图 5　负载不同浓度 GSP 油茶籽油纳米乳液抗氧化能力

Figure 5　Antioxidant capacity of camellia oil nanoemulsions 

loaded with different concentrations of GSP
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3　结论
以油茶籽油为原料，采用 Shah 法结合单因素轮换法

制备了负载葡萄籽多酚的 W/O 型纳米乳液。通过伪三元

相图优化，确定最佳配方为吐温 80-司盘 80（质量比 5∶5，

HLB 值 10.2）为复合表面活性剂、Km=4 的无水乙醇为助

表面活性剂、油相占比 20%，所得乳液粒径均一［（326.5±
2.7） nm］、Zeta 电位绝对值高［（46.4±0.2） mV］、PDI 良好

（0.238）。低场核磁分析选定 1.5% 为最佳葡萄籽多酚负

载浓度，该浓度下乳液对 DPPH 自由基和 ABTS 自由基清

除率分别提升至 82.69% 和 71.18%（较空白提高 3.5 倍），

并得益于致密界面膜、油茶籽油抗氧化性及多酚—脂质

协同作用，负载葡萄籽多酚的纳米乳液展现出卓越的物

理稳定性。

构建的油茶籽油纳米乳液体系，从改善多酚类功能

性成分应用性能来看，其有效解决了多酚类物质固有问

题，显著提升了其在油脂体系中的溶解性与分散性；并减

少了多酚受温度、光照等环境因素的影响，提高了其活性

保留率与贮藏稳定性，为多酚类成分突破应用瓶颈提供

了关键技术支撑。从具体的应用领域来看，其在多个领

域皆具有发展潜力：在食品保鲜方面，该纳米乳液可作为

天然抗氧化剂用于油脂、肉类、果蔬等食品的保鲜处理，

延缓其氧化变质，并延长货架期；在功能食品开发中，可

作为多酚类活性成分的递送系统，能稳定融入饮料、烘焙

食品、乳制品等各类食品中，将多酚类功能成分转化为可

工业化应用的添加剂，提升功能性食品的营养与健康价

值；在医药领域，该体系具备良好的生物相容性与稳定

性，有望作为疏水性药物或天然活性成分的载体，用于改

善药物的溶解性、稳定性和靶向释放性能，并可减少药物

在贮藏、运输过程中的损耗。
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