基于显示动力学模拟的草莓冲击碰撞损伤分析

Strawberry impact collision injury analysis based on display dynamics simulation

张镇江 史景旭 郭武身 温保岗 张 旭 ZHANG Zhenjiang SHI Jingxu GUO Wushen WEN Baogang ZHANG Xu (大连工业大学机械工程与自动化学院,辽宁大连 116034)

(School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, Liaoning 116034, China)

摘要:目的:解决加工过程草莓在冲击作用下易损伤引起 品质下降的问题。方法:利用显示动力学模拟方法研究 草莓碰撞过程冲击能损耗、内部应力及冲击损伤间的关 系,采用响应面法分析碰撞参数对冲击损伤程度及敏感 性的影响。结果:草莓碰撞钢板 23 ms 时,草莓的损伤体 积比(7.83%)达到最大,同时冲击能损耗值(95.60 mJ)和 内部应力(0.238 4 MPa)均达到最大值;碰撞模拟结果误 差均<5.0%,仿真方法可靠。结论:碰撞过程冲击能的变 化引起草莓内部应力动态响应,从而决定了冲击损伤程 度;果实损伤敏感性的影响因素为接触材料>冲击速 度>碰撞角度。

关键词:冲击损伤;有限元分析;响应面;碰撞;草莓

Abstract: Objective: Aiming at the problem that strawberry quality was easy to be damaged under impact in processing process. Methods: The relationship among impact energy loss, internal stress and impact damage of strawberry during impact was studied by display dynamics simulation method. The impact of impact parameters on damage degree and sensitivity was analyzed by response surface method. Results: When the strawberry collides with the steel plate at 23 ms, the ratio of strawberry damage volume reached the maximum (7.83%), and at the same time, the impact energy loss (95.60 mJ) and internal stress (0.238 4 MPa) both reached their maximum values. The error of collision simulation results was less than 5.0%, and the simulation method was reliable. Conclusion: The dynamic response of internal stress in strawberry is caused by the change of impact energy, which determines the impact damage degree. The influencing factors of fruit damage sensitivity were: contact material > impact velocity > impact angle.

通信作者:张旭(1978—),男,大连工业大学副教授,博士。

E-mail:zhangxu_dlut@163.com

收稿日期:2023-03-23 改回日期:2023-08-30

Keywords: impact damage; finite element analysis; response surface; collision; strawberry

草莓为质地偏软的浆果。An等^[1]发现草莓跌落损 伤的敏感性受环境温度影响较大;陈萃仁等^[2]研究了草 莓的碰撞损伤与耐贮特性的变化规律;韩学伟^[3]发现樱 桃的水平碰撞损伤与初始速度、碰撞类型、环境温度有 关,并建立了描述樱桃碰撞损伤的预测模型;马帅等^[4]发 现葡萄的碰撞损伤与碰撞速度有关,并探索了接触应力 与碰撞损伤的联系;尹伊春^[5]获得了用于宽皮柑橘损伤 评价的度量方法,柑橘的损伤与跌落高度和缓冲材料有 关;Sun等^[6]应用高光谱成像技术对跌落碰撞后番茄的损 伤进行了研究,发现果实大小、跌落高度和检测时间点对 损伤影响显著。目前碰撞损伤主要针对采摘、运输等场 景以及果实损伤的评价方法等方面进行研究,随着草莓 加工机械化、自动化的快速发展,因机械加工引起的果实 冲击损伤问题的分析与防治受到企业重视,而对该领域 的研究报道较少。

采用有限元方法对水果损伤过程进行模拟已成为水 果损伤行为分析的有效手段。鲍玉冬等^[7]采用有限元方 法研究了蓝莓果实下落高度、接果板倾斜角度与储存变 形能的关系,建立了碰撞变形量方程用于预测蓝莓的损 伤;Du等^[8]模拟了猕猴桃与钢性面的碰撞过程,研究了 不同成熟度猕猴桃的损伤敏感性;Zhao等^[9]建立了枸杞 的弹塑性材料模型,研究了跌落高度、冲击材料、冲击角 度对枸杞果实损伤率的影响。水果损伤程度分析的常见 指标包括损伤面积、损伤体积^[10],以及损伤敏感值^[11]等。

草莓的加工损伤主要表现为果实与加工装置结构及 包装材料间碰撞引起的冲击损伤,其损伤行为与碰撞过 程果实内部应力的瞬态变化密切相关^[8,12]。研究拟采用 显示动力学模拟方法研究草莓冲击碰撞过程的损伤行 为,采用响应面法分析碰撞参数、接触材料等因素对冲击 能损耗百分比、损伤体积百分比、损伤敏感值等损伤指标

基金项目:辽宁省教育厅科学研究项目(编号:LJKZ0542) 作者简介:张镇江,男,大连工业大学在读硕士研究生。

1 材料与方法

1.1 试验材料

草莓:红颜,采样期为 2022 年 12 月 10 日(成熟期 12—4 月份);质量 20~25 g,小型果;挑选个体均匀、形体 圆润、无虫害、无机械损伤的红熟期(表面有 90%的红色 阶段)草莓果实样品;采后于温度 20~22 ℃,相对湿度 85%~95%贮藏,辽宁东港某种植基地。

1.2 仪器与设备

质构仪:TMS-PRO型,美国FTC公司;

游标卡尺:DL91300型,浙江宁波得力公司;

碰撞试验装置:自行搭建,该装置由高速摄像系统、 定位及调节装置、平台及数据采集系统等组成。试样经 负压吸附定位于初始高度位置(通过高度调节装置将冲 击速度转化为下落高度),将接触材料置于平台上,关闭 气泵后试样经自由落体与接触材料碰撞,碰撞过程由高 速摄像机记录。

1.3 碰撞过程仿真

1.3.1 前处理 随机选择草莓整果试样进行对称剖切, 保留 1/4 并区分果实皮层和髓部,采用 Solidworks 软件 提取边界轮廓,建立由皮层和髓部组成的草莓分层模型 (见图 1)。草莓材料参数依据 GB/T 7314—2017 标准测 定。分别以草莓皮层和髓部为对象,制备长 9 mm×宽 9 mm×高 13 mm 的标准长方体试样块各 10 个,采用 FTC 质构仪对试样进行准静态加载,探头为 Φ 100 mm 的圆柱形平头,加载速度 10 mm/min,压缩水平 50%,实 时记录力—变形数据,计算试样的弹性模量、破坏应力、 破坏应变、剪切模量。草莓模型设置 10 节点改进四面体 单元,网格质量最高为 1.00 mm,网格数量 89 742 个。在 草莓模型下方建立水平放置的接触材料模型,在其底面 施加全约束。建立的草莓—接触材料碰撞系统的有限元 分析模型如图 2 所示。

图 2 草莓跌落碰撞系统的整体有限元模型

1.3.2 求解 采用 Abaqus 软件模拟草莓冲击碰撞过程, 为草莓果实模型施加初始速度条件,分析冲击作用下草 莓与接触材料间的瞬态动力学行为。将碰撞时间设定为 100 ms,仿真分析过程设置为 100 个分析步。

1.3.3 指标 根据文献[1,8],草莓冲击损伤可采用损伤 体积比 *P*_v、冲击能损耗比 *P*_Q、损伤敏感值 *C* 进行评价,并按式(1)进行计算。

$$\begin{cases}
P_{v} = \frac{V}{V_{t}} \times 100\% \\
P_{Q} = \frac{Q}{Q_{t}} \times 100\%, \quad (1) \\
C = \frac{V}{Q} \\
\exists \psi : \\
P_{v} \longrightarrow 损伤体积百分比,\%; \\
P_{Q} \longrightarrow \# 都 能损耗百分比,\%; \\
C \longrightarrow 损伤敏感值, mm^{3}/J; \\
V \longrightarrow 损伤体积, mm^{3}; \\
Q \longrightarrow \# 击 能损耗值, mJ; \\
V_{t} \longrightarrow 整果体积, mm^{3}; \end{cases}$$

Q_t——总冲击能量值,mJ。

1.3.4 实验验证 采用草莓整果作为试样进行碰撞试验, 利用高速摄像机记录试验过程,基于 Kinovea 运动分析系 统计算冲击能及其损耗。根据文献[1,8,12],测量褐变后 试样的损伤体积,整果体积可采用排水法。计算各冲击损 伤指标值并与相同条件下的仿真结果进行对比验证。

1.4 试验设计

1.4.1 单因素试验 考虑加工场景下草莓物料被拣选、 清理、包装及搬运等环节,草莓物料与机械结构、包装物 等发生碰撞的实际情况,草莓冲击损伤可认为主要受冲 击速度、碰撞角度和接触材料 3 个因素影响。根据调研, 冲击速度一般<5.0 m/s,碰撞角度随机,接触材料主要有 钢板、瓦楞纸板和 EPE 泡沫板等。固定接触材料为钢板, 碰撞角度为 0°,考察冲击速度(1.8,2.4,3.0,3.6,4.2 m/s)对 果实损伤评价指标的影响;固定接触材料为钢板;冲击速 度为 3.0 m/s,考察碰撞角度(0°,30°,45°,60°,90°)对果实损 伤评价指标的影响;固定冲击速度为 3.0 m/s,碰撞角度为 0°,考察接触材料(钢板、瓦楞纸板、EPE 泡沫板)对果实损 伤评价指标的影响。其中,碰撞角度定义为果实花径轴花 萼向下的方向与水平放置的接触材料表面的夹角。

1.4.2 Box-Behnken 设计 选取冲击速度、碰撞角度、接触材料3个因素作为考察对象,以冲击能损耗百分比、损伤体积百分比、果实损伤敏感值作为评价指标,根据 Box-Behnken 中心组合原理进行响应面设计。

1.4.3 数据处理 每组试验选取 3 个样本,计算冲击能 损耗百分比、损伤体积百分比、损伤敏感值,并取平均值。 利用 Origin 软件和 Design-Expert 软件对试验数据进行 制图与分析。

2 结果与分析

2.1 冲击碰撞过程仿真

2.1.1 前处理分析 由表 1 可知, 草莓皮层和髓部弹性 模量分别为 0.385, 0.463 MPa, 因此建立双层模型能够更 准确地模拟碰撞过程草莓的力学响应。基于 Abaqus 软 件模拟草莓与接触材料的碰撞过程,根据表 1 数据定义 草莓分层模型的材料参数,根据不同试验条件确定草莓 的初始速度、姿态、接触材料的材料参数及其与草莓模型 间的摩擦系数等。

表1 草莓模型材料参数

Tabl	le		Materia	l parameters	ot	straw	berry	mode	el –
------	----	--	---------	--------------	----	-------	-------	------	------

材料	密度/(g•cm ⁻³)	泊松比	弹性模量/MPa	屈服应力/MPa	剪切模量/MPa
皮层	1.010 ± 0.040 5	0.4	0.385 ± 0.036	$0.060 \ 9 \pm 0.007 \ 3$	0.251 ± 0.048
髓部	1.010 ± 0.040 5	0.4	0.463 ± 0.072	$0.069 \ 9 \pm 0.008 \ 2$	0.285 ± 0.072

2.1.2 有限元仿真 以冲击速度为 3.0 m/s、碰撞角度为 0°、接触材料为钢板为例,对仿真结果进行分析。当草莓 在 0°姿态及初始速度 3.0 m/s下与钢板发生碰撞时,冲击 能损耗值和系统总能量变化曲线如图 3 所示,其中果实 内能曲线的峰值反映冲击能损耗值,系统动能曲线的初 始值为总能量值;碰撞过程草莓果实内部的应力变化云 图如图 4 所示。

由图 3 可知,初始速度 3.0 m/s 下草莓一钢板碰撞系 统的总能量值为 100.48 mJ,随着碰撞开始,系统动能迅 速转化为草莓果实内能,在约 23 ms 时草莓吸收的冲击 能达到最大值 95.60 mJ,之后果实内能有所下降又转化 为系统动能,体现了碰撞过程草莓受压变形、恢复及再次 弹起的能量变化。如图 4(a)所示,初始接触时果实的最 大等效应力较小(5 ms 时,等效应力为 0.025 2 MPa),发 生在接触区域;随后果实的弹性变形逐渐增大,最大等效

Figure 5 Energy analysis

应力呈圆弧型区域向果实内部扩展,约10 ms时达到最 大弹性变形状态[图 4(b)],内部最大等效应力达到 0.0609 MPa,此时果实尚未出现损伤;之后为塑性变形

阶段,应力云图中灰色区域不断扩大,在约 23 ms 时,随 着系统冲击能损耗达到最大,果实的内部最大等效应力 为 0.238 4 MPa,损伤体积也达到最大[图 4(c)]。根据文 献[1]的方法提取草莓的最大损伤体积(图 5),损伤单元 数为 7 027,占总单元数的 7.83%;之后草莓吸收的冲击 能开始释放,草莓从压缩变形状态逐渐恢复,内部应力也 逐渐减小,42 ms时变形完全恢复[图 4(d)],之后草莓将 再弹起。该仿真结果表明,草莓果实吸收系统动能后内 部应力的变化是冲击损伤的力学本质,可通过仿真结果 分析,研究碰撞的影响因素对果实损伤程度及损伤敏感 性的关系。

Figure 5 Damage volume extraction

2.1.3 有效性验证 根据上述试验条件开展碰撞试验, 测量总能量及冲击能损耗、整果和损伤体积等。相同条件下试验与仿真方法获得的损伤指标值如表 2 所示。仿 真获得的各指标值误差均<5.0%,有限元模型是可靠的, 仿真结果可用于草莓的损伤程度及敏感性分析。

表 2 冲击碰撞试验与仿真结果对比

Table 2 Comparison between impact test and simulation results

项目	单位	试验值	仿真值	相对误差/%
冲击能损耗百分比	%	91.65	95.14	3.68
损伤体积百分比	%	7.46	7.83	4.76
损伤敏感值	mm^3/J	18 279	18 481	1.05

2.2 单因素试验

由图 6 可知,冲击速度影响冲击能损耗值及其在总 能量中的占比,冲击能增大则损伤体积必然增大,损伤敏 感性随冲击速度的增加呈加速上升趋势,碰撞速度较高 时接触材料的缓冲效果下降明显。由图 7 可知,随着碰 撞角度的增大,各指标值均先增后降,45°时各指标值达到 最大。各指标值随碰撞角度变化体现的是果实不同部位 发生碰撞的损伤差异性,结合应力云图来看,45°时碰撞点 区域轮廓曲率较大,其初始接触区域最小,该处应力值及 其后续过程的应力增幅也较大,因此该情况下冲击损伤 也较大。由图 8 可知,由于 EPE 泡沫板、瓦楞纸板的缓冲 效果使得冲击能损耗占比降至 40%~50%,果实损伤体 积约为钢板时的 1/3;同时钢板的损伤敏感性也远高于缓 冲材料,因此生产中在易碰撞部位进行缓冲保护比降低 果实运动速度的防损效果可能更有效。

evaluation index

2.3 Box-Behnken 设计试验分析

Box-Behnken 试验因素水平见表 3,试验方案与结果 见表 4。由表 4 可知,冲击能损耗值百分比、损伤体积百 分比、损伤敏感值分别为 40% ~ 98%,0~13%,0~ 20 000 mm³/J,无奇异点。

表 3	因素及水平编码表
Table 3	Factor level coding table

水平	X1冲击速度/ (m•s ⁻¹)	X2碰撞角度/(°)	X ₃ 接触材料
-1	2.4	0	钢板
0	3.0	45	瓦楞纸板
1	3.6	90	EPE 泡沫板

2.3.1 各因素对草莓果实冲击能损耗值百分比的影响 利用响应面法对表4结果进行多元二次方程回归分

析用响应面层对表 4 结末进行多九二(人力程回归) 析^[13],建立冲击能损耗值百分比(Y₁)的函数关系:

 $Y_{1} = 54.96 + 3.31X_{1} + 1.56X_{2} - 25.80X_{3} - 0.14X_{1}X_{2} + 2.76X_{1}X_{3} - 0.35X_{2}X_{3} - 0.79X_{1}^{2} - 3.23X_{2}^{2} + 18.27X_{3}^{2}$

由表5可知,X1、X3对果实冲击能损耗值百分比影响

表 4	试验设计与结果
-----	---------

		Table 4	Exper	imental design and	results	
试验号	Υ.	X_2	X_3	Y1冲击能损耗值	Y2损伤体积	Y ₃ 损伤敏感值/
	241			百分比/%	百分比/%	$(mm^3 \cdot J^{-1})$
1	-1	-1	0	45.65	1.24	9 513
2	1	-1	0	52.39	4.95	14 742
3	-1	1	0	49.75	0.00	0
4	1	1	0	55.92	4.82	13 445
5	-1	0	-1	96.68	5.13	18 053
6	1	0	-1	97.94	12.18	19 128
7	-1	0	1	41.40	0.45	3 830
8	1	0	1	53.70	4.26	13 265
9	0	-1	-1	95.15	7.83	18 279
10	0	1	-1	97.28	7.96	18 196
11	0	-1	1	42.41	1.98	10 448
12	0	1	1	44.13	1.34	6 828
13	0	0	0	53.08	3.52	14 873
14	0	0	0	54.32	3.83	15 658
15	0	0	0	55.92	4.25	16 425
16	0	0	0	54.42	3.83	15 772
17	0	0	0	57.03	4.85	13 686

表 5 回归系数显著性分析[†]

Table 5 Significance analysis of regression coefficient

本 酒		P 值		
木你	Y_1	${Y}_2$	${Y}_3$	
\mathbf{X}_1	0.000 6**	0.000 2**	0.000 4 * *	
\mathbf{X}_2	0.026 0*	0.239 1	0.017 3*	
X_3	<0.000 1**	<0.000 1**	<0.000 1**	
X_1X_2	0.860 7	0.316 1	0.042 0*	
X_1X_3	0.009 7**	0.015 9*	0.039 4*	
X_2X_3	0.666 4	0.482 1	0.320 4	
\mathbf{X}_1^2	0.333 7	0.287 9	0.009 3**	
\mathbf{X}_2^2	0.003 9**	0.004 7**	0.007 5**	
X_3^2	<0.000 1 * *	0.000 2**	0.196 8	

† * * 表示差异极显著(P<0.01); * 表示差异显著 (P<0.05)。

极显著(P < 0.01); $X_1 X_3$ 对冲击能损耗值百分比影响极显著(P < 0.01); X_2 对冲击能损耗值百分比影响显著(P < 0.05)。由图 9 可知,各因素对冲击能损耗百分比影

响大小依次为接触材料>冲击速度>碰撞角度。当改变 接触材料时冲击能损耗百分比发生明显变化,而冲击速 度或碰撞角度的变化对其影响较小,说明冲击速度增大 对损伤的影响主要来自冲击能的增大而非其在总能力占 比的增大。当草莓生产场景或工艺确定时(即草莓一接 触材料碰撞系统的总能量一定时),改善接触材料的缓冲 效果是防损的第一要素。

2.3.2 各因素对草莓果实损伤体积百分比的影响 损伤 体积百分比(Y₂)的函数关系:

 $Y_2 = 4.06 + 2.42X_1 - 0.23X_2 - 3.14X_3 + 0.28X_1X_2 - 0.81X_1X_3 - 0.19X_2X_3 - 0.29X_1^2 - 1.02X_2^2 + 1.74X_3^2$

(3)

由表 5 可知,X₁,X₃对果实损伤体积百分比影响极显 著(P<0.01);X₁X₃对果实损伤体积百分比影响显著 (P<0.05)。由图 10 可知,各因素对果实损伤体积百分 比影响大小依次为接触材料>冲击速度>碰撞角度。果 实损伤与冲击能的实际损耗值直接相关,提高冲击速度 则冲击能损耗值增大,更换接触材料则是改变冲击能损

Figure 9 Response surface diagram of the interaction of two factors on the impact energy loss

耗占比,而改变碰撞角度对冲击能损耗影响很小,因此碰 撞角度对果实损伤的影响远小于其他两个因素。

2.3.3 各因素对草莓果实损伤敏感值的影响 损伤敏感 值(Y₃)的函数关系为:

 $Y_{3} = 15 \quad 282. \quad 8 + 3 \quad 648X_{1} - 1 \quad 814. \quad 12X_{2} - 4 \quad 910.63X_{3} + 2 \quad 054X_{1}X_{2} + 2 \quad 090X_{1}X_{3} - 884.25X_{2}X_{3} - 2 \quad 863.28X_{1}^{2} - 2 \quad 994.53X_{2}^{2} + 1 \quad 149.47X_{3}^{2} \circ$

由表 5 可知, X_1 、 X_3 对果实损伤敏感值影响极显著 (P < 0.01); X_2 对果实损伤敏感值影响显著(P < 0.05); X_1X_2 、 X_1X_3 对果实损伤敏感值影响显著(P < 0.05)。由 图 11 可知,各因素对果实损伤敏感值影响大小依次为接 触材料>冲击速度>碰撞角度。草莓加工生产中应优先 考虑生产线上易碰撞位置、结构以及产品包装的防损设 计,其次从工艺设计角度对草莓物料受力、运动进行优 化,减少其受冲击的可能性和程度。

3 结论

基于建立的草莓冲击碰撞系统的有限元模型,并利 用 Abaqus 软件的显示动力学模块,模拟了草莓以不同冲 击速度、碰撞角度与接触材料碰撞产生损伤的动态过程, 并结合碰撞试验验证了仿真的准确度。结果表明:随着 碰撞过程冲击能耗变化,草莓果实内部形成应力变形区 域,冲击损伤体积与应力变形区域位置和大小等特征密

图 10 两因素交互作用对果实损伤体积百分比的响应面图

图 11 两因素交互作用对果实损伤敏感值的响应面图

Figure 11 Response surface diagram of the interaction of two factors on the damage sensitivity value

切相关;冲击速度和接触材料的改变将影响冲击能损耗 值及其在总能耗中的占比,而碰撞角度的改变则体现了 果实不同位置发生碰撞的损伤差异;影响果实损伤程度 和敏感性的因素由大到小依次为接触材料>冲击速度> 碰撞角度;草莓生产过程中应从易碰撞位置、结构以及产 品包装的防损设计,以及从工艺优化角度降低冲击损伤。 后续可综合考虑果实成熟度、接触材料、环境温度等因 素,完善草莓冲击碰撞损伤的分析和预测技术。

参考文献

- AN X, LIU H, FADIJI T, et al. Prediction of the temperature sensitivity of strawberry drop damage using dynamic finite element method[J]. Postharvest Biology and Technology, 2022, 190: 111939.
- [2] 陈萃仁, 崔绍荣, 柴德, 等. 草莓果实冲击损伤规律的研究[J]. 农业工程学报, 1997(4): 238-239.
 CHEN C R, CUI S R, CHAI D, et al. Study on the impact damage law of strawberry fruits[J]. Transactions of the Chinese Society of Agricultural Engineering, 1997(4): 238-239.
- [3] 韩学伟. 甜樱桃水平碰撞损伤预测及防损策略研究[D]. 咸阳: 西北农林科技大学, 2022: 48-63.
 HAN X W. Horizontal collision damage prediction and damage prevention strategy of sweet cherry[D]. Xianyang: Northwest A & F University, 2022: 48-63.
- [4] 马帅, 徐丽明, 邢洁洁, 等. 葡萄果实碰撞损伤试验研究及有限 元分析[J]. 中国农业大学学报, 2018, 23(11): 180-186.
 MA S, XU L M, XING J J, et al. Study on collision damage experiment of grape and finite element analysis[J]. Journal of China
- [5] 尹伊君. 宽皮柑橘压缩损伤特性与机械损伤评估研究[D]. 武 汉: 华中农业大学, 2018: 51-61.

Agricultural University, 2018, 23(11): 180-186.

YIN Y J. Study on the compression damage and mechanical damage assessment of citrus reticulata blanco [D]. Wuhan: Huazhong

(上接第52页)

- [14] LI J B, ZHANG H L, ZHAN B S, et al. Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA method[J]. Infrared Physics and Technology, 2020, 104: 103154.
- [15] ZHAN B S, XIAO X, PAN F, et al. Determination of SSC and TA content of pear by Vis-NIR spectroscopy combined CARS and RF algorithm [J]. International Journal of Wireless and Mobile Computing, 2021, 21(1): 41-51.
- [16] LI M, TIAN J, WANG Y L, et al. Intelligent measurement of coal moisture based on microwave spectrum via distance-weighted KNN[J]. Applied Sciences, 2022, 12(12): 6199.
- [17] DAVID T, REBECA C, ALBERTO O. Near infrared spectroscopy (NIRS) as tool for classification into official commercial

Agricultural University, 2018: 51-61.

- [6] SUN Y, PESSANE I, PAN L, et al. Hyperspectral characteristics of bruised tomatoes as affected by drop height and fruit size[J]. LWT, 2021, 141: 110863.
- [7] 鲍玉冬,杨闯,赵彦玲,等.基于碰撞变形能的机械采收蓝莓果 实碰撞损伤评估[J].农业工程学报,2017,33(16):283-292.
 BAO Y D, YANG C, ZHAO Y L, et al. Collision injury assessment of mechanical harvesting blueberry fruit based on collision deformation energy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 283-292.
- [8] DU D, WANG B, WANG J, et al. Prediction of bruise susceptibility of harvested kiwifruit (Actinidia chinensis) using finite element method[J]. Postharvest Biology and Technology, 2019, 152: 36-44.
- [9] ZHAO J, SUGIRBAY A, CHEN Y U, et al. FEM explicit dynamics simulation and NIR hyperspectral reflectance imaging for determination of impact bruises of Lycium barbarum L. [J]. Postharvest Biology and Technology, 2019, 155: 102-110.
- [10] OPARA U L, PATHARE P B. Bruise damage measurement and analysis of fresh horticultural produce: A review [J]. Postharvest Biology and Technology, 2014, 91: 9-24.
- [11] SCHOORL D, HOLT J E. Bruise resistance measurements in apples[J]. Journal of Texture Studies, 1980, 11(4): 389-394.
- [12] CELIK H K. Determination of bruise susceptibility of pears (Ankara variety) to impact load by means of FEM-based explicit dynamics simulation [J]. Postharvest Biology and Technology, 2017, 128: 83-97.
- [13] 许晖, 孙兰萍, 张斌, 等. 响应面法优化花生壳黄酮提取工艺的研究[J]. 中国粮油学报, 2009, 24(1): 107-111.
 XU H, SUN L P, ZHANG B, et al. Optimization of extraction technique of flavonoids from peanut hull using response surface methodology [J]. Journal of the Chinese Cereals and Oils

Association, 2009, 24(1): 107-111.

categories and shelf-life storage times of pre-sliced modified atmosphere packaged Iberian dry-cured loin[J]. Food Chemistry, 2021, 356: 129733.

- [18] ANDERSSON M. A comparison of nine PLS1 algorithms [J]. Journal of Chemometrics, 2009, 23(10): 518-529.
- [19] 吴丽君,白晓莉,王毅,等.近红外光谱结合 SVR 测定造纸法 再造烟叶物理指标[J]. 食品工业, 2017, 38(8): 262-264.
 WU L J, BAI X L, WANG Y, et al. Determination of physical parameters of reconstituted tobacco using near infrared spectroscopy combined with SVR[J]. The Food Industry, 2017, 38 (8): 262-264.
- [20] GUO Y, NI Y N, KOKOT S. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics [J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2016, 153: 79-86.