鲢鱼和青鱼内源性转谷氨酰胺酶纯化 及酶学性质比较

Purification and comparison of enzymatic properties of endogenous transglutaminase between silver carp and black carp

易林^{1,2} 安玥琦^{1,2} 刘 茹^{1,2} 胡 杨^{1,2} 熊善柏^{1,2}

 YI Lin^{1,2}
 AN Yueqi^{1,2}
 LIU Ru^{1,2}
 HU Yang^{1,2}
 XIONG Shanbai^{1,2}

 (1. 华中农业大学食品科学技术学院,湖北 武汉
 430070;2. 华中农业大学国家

 大宗淡水鱼加工技术研发分中心〔武汉〕,湖北 武汉
 430070)

(1. College of Food Science and Technology, Huazhong Agricultural University, Wuhan,

Hubei 430070, China; 2. National R & D Branch Center for Conventional Freshwater

Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China)

摘要:目的:探究鲢鱼、青鱼内源性转谷氨酰胺酶 (transglutaminase, TGase)的酶学性质差异。方法:采用 80% (NH4)2 SO4 盐析、Q-Sepharose FF 和 Sephacryl S-200 HR 层析法从鲢鱼、青鱼肌肉中分离纯化出鲢鱼 TGase(STG)、青鱼 TGase(BTG),并对酶的相对分子质 量、肽段序列、二级结构、适宜反应条件、热失活动力学等 指标进行测定。结果:纯化后的 STG 和 BTG 的比酶活分 别为14.34,12.67 U/mg,二者具有相近的相对分子质量。 二者的肽段序列存在一定差异,其二级结构均以β-折叠 为主,但 STG 的 β -折叠含量略高于 BTG 的。STG 和 BTG的适宜反应温度均为 50 ℃,适宜反应 pH 分别为 8.0,7.5,完全激活两种 TGase 活性所需的 Ca2+浓度均为 1 mmol/L, DTT 可使两种 TGase 的酶活性增强, 而 PMSF、NH₄Cl、NEM、EDTA、Cu²⁺、Ba²⁺、Zn²⁺、Mg²⁺则 会抑制其酶活。当温度为 37~50 ℃时,热处理对 STG 和 BTG 的钝化均符合一级指数衰减动力学,二者的动力学 参数 E。值相近。结论:STG 和 BTG 的一级结构及二级 结构差异明显,但仍具有相似的适宜反应条件和热失活 动力学特征。

关键词:淡水鱼;转谷氨酰胺酶;分离纯化;结构特性;适 宜反应条件;失活动力学 Abstract: Objective: This study aimed to investigate the differences in enzymatic properties of endogenous transglutaminase (TGase) in silver carp and black carp. Methods: STG and BTG were purified from the muscle of silver carp and black carp, respectively, by 80% ammonium sulfate precipitation, Q-Sepharose FF, and Sephacryl S-200 HR chromatographies. Two enzymes were analyzed for relative molecular weights, peptide sequences, secondary structures, optimal reaction conditions, and thermal inactivation kinetics. Results: The purified STG and BTG showed similar relative molecular weights, of which the enzyme activities were 14.34 U/mg and 12.67 U/mg, respectively. Both enzymes showed differences in peptide sequences. The secondary structures of them were mainly the β -fold, though the content of β -fold in STG was slightly higher than that of BTG. The optimal temperatures for STG and BTG were both 50 $\,^{\circ}\!\!\mathbb{C}$, and the optimal pH values were 8.0 and 7.5, respectively. The enzymes required Ca²⁺ up to 1 mmol/L for full activation. The activities of STG and BTG were enhanced by DTT, whereas PMSF, $\mathrm{NH}_4\ \mathrm{Cl}\text{,}$ NEM, EDTA, Cu²⁺, Ba²⁺, Zn²⁺, and Mg²⁺ showed inhibitory effects. When the temperature was 37~50 °C, the passivations of STG and BTG by thermal treatment conformed to the first-order exponential decay kinetics with similar values of E_a . Conclusion: The primary and secondary structures of STG and BTG exhibited obvious differences, yet they still exhibited similar properties in terms of optimal reaction conditions and thermal inactivation kinetics.

Keywords: freshwater fish; transglutaminase; purification; structure properties; optimal reaction conditions;

基金项目:财政部和农业农村部:国家现代产业技术体系(编号: CARS-45-28)

作者简介:易林,女,华中农业大学在读硕士研究生。

通信作者:熊善柏(1963-),男,华中农业大学教授,硕士。 E-mail: xiongsb@mail.hzau.edu.cn

收稿日期:2023-08-30 改回日期:2023-10-03

inactivation kinetics

鱼糜制品是中国传统水产加工品。凝胶特性是决定 鱼糜及鱼糜制品品质的重要指标。在鱼糜凝胶化过程 中,鱼肉中的内源性转谷氨酰胺酶(TGase)可通过(γ-Glu)-Lys 键促进蛋白质分子内或分子间的交联,从而有 效增强鱼糜的凝胶特性^[1-2]。TGase 的催化作用不仅取 决于其自身和底物蛋白的结构性质,还与温度、pH、激活 剂或抑制剂等有重要关系^[3]。适宜的温度及 pH 有利于 TGase 与底物蛋白的相互作用,低浓度的 Ca²⁺ 可激发 TGase 活性,而 Cu²⁺、Ba²⁺等金属离子或 NEM、EDTA 等抑制剂可不同程度地阻碍 TGase 的活性中心与底物蛋 白的结合^[4]。

近年来,由于海水鱼成本高,鲢鱼、青鱼、草鱼等低值 淡水鱼成为生产鱼糜及鱼糜制品的良好原料。然而,淡 水鱼的凝胶形成能力普遍较差,且不同品种淡水鱼糜的 凝胶特性表现出明显差异,青鱼、鳡鱼糜等肉食性鱼类相 比于其他食性的淡水鱼具有更高的凝胶强度[5-6],这与 内源性 TGase 的催化交联作用密切相关。Zhang 等^[7]探 讨了多种海洋动物中 TGase 的分离纯化方法及其催化交 联特性。相比之下,淡水鱼 TGase 的相关研究仅见于鲢、 鳙、草鱼等滤食性或草食性淡水鱼[8-10],而对于凝胶强度 最大的肉食性青鱼鱼糜,其 TGase 的纯化及酶学性质研 究尚未见报道,且与其他食性淡水鱼 TGase 的性质差异 尚不清楚。研究拟以鲢鱼(滤食性)、青鱼(肉食性)为原 料,探究鲢鱼 TGase(STG)和青鱼 TGase(BTG)的分离纯 化方法,比较两种食性淡水鱼 TGase 的结构性质、适宜反 应条件及热失活动力学,旨在为淡水鱼糜的品质调控提 供依据。

1 材料与方法

1.1 材料与仪器

1.1.1 材料与试剂

新鲜鲢鱼(约2kg/尾)、青鱼(约4kg/尾)肌肉:市售; 三羧甲基氨基甲烷(Tris)、乙二胺四乙酸(EDTA)、 二硫苏糖醇(DTT)、苯甲基磺酰氟(PMSF)、N-乙基马来 酰亚胺(NEM)等:分析纯,国药集团化学试剂有限公司;

还原型蛋白质上样缓冲液、10~250 kDa标准蛋白 (Marker):北京兰杰柯科技有限公司;

Sephacryl S-200 填料、Q-Sepharose FF 填料:美国 Cytiva公司。

1.1.2 主要仪器设备

紫外可见分光光度计:UV-1750型,日本岛津公司; 荧光光度计:F-4600型,日本日立公司; 圆二色谱仪:J-1500型,日本 HITACHI公司; 蛋白多糖分离纯化系统:AKTA pure L型,美国 Cytiva 公司;

超高效液相色谱仪:UltiMate 3000 RSLCnano型,美国赛默飞世尔科技公司;

质谱仪:Q-Exactive HF X型,美国赛默飞世尔科技 公司。

1.2 方法

1.2.1 TGase 的纯化及酶活测定

(1) TGase 粗酶液提取:参考李金玲等^[8]的方法并稍 作修改,将鲢鱼或青鱼肌肉与 10 倍体积含 5 mmol/L NaCl 的缓冲液 A(20 mol/L Tris-HCl、5 mmol/L EDTA、 2 mmol/L DTT、0.01% NaN3, pH 7.5)混合后均质,离心 得到上清液,沉淀进行二次提取,合并两次提取液即得到 TGase 粗酶液。粗酶液采用 80%的(NH₄)₂SO₄进行盐 析,离心后取沉淀用少量缓冲液 A(20 mol/L Tris-HCl、 5 mmol/L EDTA, 2 mmol/L DTT, 0. 01% NaN₃, pH 7.5)复溶,装入 14 kDa 透析袋中,于相同缓冲液中透 析 36 h,再用聚乙二醇 20 000 浓缩。取 5 mL 浓缩液上样 于 Q-Sepharose FF 阴离子交换层析柱(2.6 cm×60 cm), 用含有 0~0.6 mol/L NaCl 的缓冲液 A(pH 8.0)进行线 性洗脱,流速0.5 mL/min,每管收集4 mL,测定 TGase 活 性,合并酶活组分,经脱盐浓缩后,上样于预先用含有 0.15 mol/L NaCl 的缓冲液 A 平衡过的 Sephacryl S-200 HR(1.6 cm×100 cm)凝胶柱,流速 0.3 mL/min,每管收 集 2 mL,测定 TGase 活性,合并酶活组分。

(2) TGase 活性测定:参考 Hemung 等^[11]的方法。

(3) 蛋白质含量测定:参考 Lowry 等^[12]的方法。

1.2.2 SDS-PAGE试验 参考王耀冉等^[13]的方法。 1.2.3 TGase 相对分子质量测定 参考 Alhasani 等^[14]的方法并稍作修改。通过绘制标准蛋白相对分子质量的 对数 lg*M*_r与其在凝胶中的相对迁移率 *R*_f(蛋白条带距加 样端迁移距离/酚蓝区带中心距加样端迁移距离)的标准 曲线,计算目标蛋白的相对分子质量。试验所用的标准 蛋白包括 11 种相对分子质量的纯化蛋白(10,15,20,25, 30,40,50,72,100,130,250 kDa)。

1.2.4 质谱检测 将纯化得到的蛋白条带经胰蛋白酶消 化,提取出的肽段样品由自动进样器吸入后经分析柱 (75 μ m×25 cm, C₁₈, 1.9 μ m, 12 nm)分离。利用流动 相A(0.1%甲酸, 3%二甲基亚砜)和流动相B(0.1%甲 酸, 3%二甲基亚砜, 80%乙腈)建立分析梯度,流速 300 NL/min。以DDA模式采集数据,每个扫描循环中包 含1个 MS 全扫描(R = 60 K, AGC = 3e6, max IT = 25 ms, scan range=350~1 500 m/z),以及随后的20个 MS/MS扫描(R = 15 K, AGC = 1e5, max IT = 50 ms)。 HCD碰撞能量为27,四级杆的筛选窗口为1.4 Da,离子 重复采集的动态排除时间为24 s。产生的质谱数据通过 MaxQuant (V1.6.6)软件检索,数据库检索算法为 Andromeda。检索数据库为Uniprot中Transglutaminase 的蛋白质组参考数据库。主要检索参数:可变修饰选 Oxidation (M), Acetyl (Protein N-term);固定修饰选 Carbamidomethyl (C);酶切选Trypsin/P;检索结果以蛋 白和肽段水平1% FDR为标准进行筛选,删去反库蛋白、 污染蛋白、只有一个修饰肽段的蛋白条目,余下的鉴定信 息用作后续分析。

1.2.5 圆二色谱测定 使用 10 mmol/L磷酸盐缓冲液 (pH 8.0)将蛋白质质量浓度调整为 0.1 mg/mL,在测试 温度 25 ℃,扫描范围 190 ~ 260 nm,扫描速度 200 nm/min,时间常数为 1 s,带宽为 5 nm 条件下,采用 0.1 cm 厚度的样品池扫描样品溶液,测定过程中 HT 不 超过 700,Abs 不超过 2,每条谱线采集 3 遍,数据使用圆 二色谱附带的软件来计算 TGase 的二级结构含量。

1.2.6 TGase 的适宜反应条件

(1)适宜反应温度和 pH 测定:将酶液分别置于不同 温度(25,37,45,50,55,60,70 ℃)、不同 pH 值(5.5,6.5, 7.0,7.5,8.0,8.5,9.5)的底物缓冲液(pH 为 5.5~7.0 的 20 mmol/L Tris-醋酸缓冲液,pH 为 7.5~8.0 的 20 mmol/L Tris-盐酸缓冲液,pH 为 8.5~9.5 的 20 mmol/L Tris-硼酸缓冲液)中进行酶活测定。

(2) TGase 的热稳定性和 pH 稳定性测定:将酶液分别置于不同温度(25,37,45,50 ℃)或不同 pH(6.5,7.5,8.0,9.0)下孵育 120 min,每间隔 20 min 取样,在酶的适宜反应条件下测定酶活。

(3)金属离子和化合物对 TGase 活性的影响测定: 向酶液中添加 CaCl₂使其终浓度分别为 0,0.5,1,3,5,10, 20,40 mmol/L,测定 TGase 活性以确定 Ca²⁺的适宜反应 浓度;将 Ca²⁺浓度调节为 1 mmol/L,测定不同终浓度(1, 5,10 mmol/L)的 Ba²⁺、Mg²⁺、Cu²⁺、Zn²⁺等二价金属离 子及 EDTA、PMSF、NEM、NH₄ Cl、DTT 等化合物对 TGase 活性的影响。

1.2.7 TGase 的热失活动力学 采用一级指数衰减动力 学模型方程 $y = A \times \exp(-k \times x)$ 对不同温度下 TGase 活性随时间的变化进行拟合,按式(1)~式(3)计算衰减 常数、半衰期及活化能。

$$A_t = A_0 e^{-kt} , \qquad (1)$$

$$t_{1/2} = \frac{\ln 2}{k},$$
 (2)

$$\ln k = -\frac{E_{a}}{RT} + c , \qquad (3)$$

式中:

- *k*——衰减常数,min⁻¹;
 *t*_{1/2}——半衰期,min;
 R——摩尔气体常数,8.314 J/mol;
 T——绝对温度,K;
- E_a——活化能,kJ/mol。

1.2.8 数据统计与分析 所有试验重复 3 次,结果以平 均值土标准差表示。采用 SPSS Statistics 25.0 软件对试 验数 据 进 行 方 差 检 验 (ANOVA) 和 显 著 性 检 验 (Duncan's)(P < 0.05),采用 Origin 2018 软件绘图。

2 结果与分析

2.1 两种 TGase 的分离纯化

由图 1 可知,STG、BTG 经 Q-Sepharose FF 线性洗脱 后均出现 3 个蛋白峰, 且第 3 个蛋白峰表现出明显的 TGase 活性,洗脱 STG 所需的 NaCl 浓度为 0.32 ~ 0.36 mol/L,而 BTG 为 0.28 ~ 0.32 mol/L,说明 STG 和 BTG 的带电性略有差异。经 Sephacryl S-200 HR 进一步 洗脱后,两种 TGase 均出现于第 1 个蛋白峰中,与后续出 峰的小分子杂蛋白实现了有效分离。STG 的出峰位置处 于 77~90 mL 范围,而 BTG 出峰位置相对滞后,为 82 ~ 102 mL,说明 STG 的相对分子质量略大于 BTG。纯化后 的 STG、BTG 的比酶活分别为 14.34,12.67 U/mg,纯化 倍数分别为粗酶液的 53.1,52.8 倍,酶活收率分别为 10.61%,8.31%(表 1),与现有文献^[8]相比,其酶活收率得 到有效提升。

2.2 两种 TGase 的纯度鉴定及相对分子质量

由图 2 可知, 鲢鱼、青鱼 TGase 粗酶液分别经 80% 硫 酸铵盐析、Q-Sepharose FF 和 Sephacryl S-200 HR 层析 后均显示出单一的蛋白条带, 说明 STG、BTG 达到电泳 纯。将 STG、BTG 的相对迁移率(R_i)分别代入对应的标 准曲线, 得到二者的相对分子质量分别为 96,94 kDa, 与 鱿鱼(94 kDa)、金线鱼肝脏(95 kDa) TGase 的相近^[11.15], 但高于真鲷、淡水螯虾、海鳗肌肉中 TGase 的^[16-18]。

2.3 两种 TGase 的肽段序列

由图 3 可知,STG、BTG 分别检测到 105,90 条肽段, 经数据库比对,分别得到 94,89 个可信蛋白。

表 2 仅列出与 STG、BTG 肽段序列覆盖率较高的前 5 个蛋白比对结果。由表 2 可知,与 STG、BTG 匹配的前 5 种蛋白多为微生物来源,STG 和 BTG 均与一种革兰氏 阴性菌 TGase(A0A7V9Q9I3)的序列覆盖率最高,但也仅 为 30%。此外,STG 与鱼类 TGase 的匹配度较低,与鲤、 浪白鱼 TGase 的肽段序列覆盖率分别为 3.9%,2.4%,而 BTG 未鉴定到与鱼类 TGase 相似的肽段信息,这可能是 由于目前 Uniprot 数据库中有关鱼贝类 TGase 的信息较 缺乏。序列覆盖率的结果表明 STG、BTG 与其他来 源 TGase的肽段序列有明显差异,特别是鱼类 TGase,且

图 1 STG/BTG 的洗脱曲线

Figure 1 Elution curves of STG and BTG

表 1 STG/BTG 的分离纯·	ſŁ
-------------------	----

able	1 Th	e purification	results	of	STG	and	BTC	ì
------	------	----------------	---------	----	-----	-----	-----	---

佐山 山 (山)	总蛋白/mg		总酶活/U		比酶活/(U•mg ⁻¹)		得率/%		纯化倍数	
地化少辣	STG	BTG	STG	BTG	STG	BTG	STG	BTG	STG	BTG
粗提	9 127.33	7 143.83	2 486.49	1 710.56	0.27	0.24	100.00	100.00	1.0	1.0
80%硫酸铵盐析	5 123.53	5 764.41	1 895.77	1 268.76	0.37	0.22	76.24	74.17	1.4	0.9
Q-Sepharose FF	66.04	39.19	668.86	388.38	10.13	9.91	26.90	22.70	37.5	41.3
Sephacryl S-200 HR	18.41	11.21	263.90	142.07	14.34	12.67	10.61	8.31	53.1	52.8

STG、BTG 二者的肽段序列也存在一定程度的差异。

Т

2.4 两种 TGase 的二级结构

由图 4 可知, STG 和 BTG 分别在 208, 218 nm 和 211, 220 nm 处表现出两个负的圆二色性峰,这与 α-螺旋 特征 谱带相符, 而在 192, 193 nm 附近出现的正峰则与 β-折叠结构的谱带相近。由表 3 可知, STG、BTG 的二级 结构中 β-折叠占比最多, 分别为 42.4%, 35.4%, 其次为 α-螺旋和无规卷曲结构, 而 β-转角占比最少。红海鲷 TGase 的二级结构同样以 β-折叠为主^[19], 但吸水链霉菌 TGase 的二级结构同样以 β-折叠为主^[19], 但吸水链霉菌 TGase 的二级结构则以 α-螺旋为主^[20]。STG 的 β-折叠 含量略高于 BTG 的, 而其 β-转角含量明显低于 BTG 的, 说明两种 TGase 的二级结构存在一定差异, 这可能与其 肽段序列差异有关。

2.5 两种 TGase 的适宜反应温度及热稳定性

由图 5 可知,STG、BTG 的适宜反应温度均为 50 ℃, 在 45~50 ℃范围内均有较强的 TGase 活性,当温度超过 50 ℃时,活性急剧下降。多数水生动物 TGase 的适宜反 应温度为 37~50 ℃,温度高于 70 ℃时会失去活性^[17,21], 而 Zhang 等^[22] 从南极磷虾中纯化得到一种冷活性 TGase,其适宜温度可低至 4 ℃;Yasueda 等^[18] 从真鲷幼 鱼肝脏中分离得到的新型 TGase,其适宜反应温度为 55~60 ℃。综上,不同水生动物 TGase 的适宜反应温度 略有差异,可能与其栖息环境的温度有关。STG 和 BTG 均在 25,37 ℃较稳定,经 120 min 保温后仍分别保留约 90%,80%的活性;45 ℃保温 120 min 后,残余活性均降 低至50%以下;而 50 ℃保温 60 min 后,STG、BTG的残

1. BTG粗酶液 2. BTG盐析液 3. BTG的Sephacryl S-200 HR

1. Marker 2. STG粗酶液 3. STG盐析液 4. STG的Q-Sepharose FF酶活组分 5. STG的Sephacryl S-200 HR酶活组分

图 2 STG/BTG 的 SDS-PAGE Figure 2 SDS-PAGE results of STG and BTG

Table 2 Identification results of SIG and DIG	Table 2	Identification	results	of	STG	and	BTG
---	---------	----------------	---------	----	-----	-----	-----

种类	登录号	蛋白	相对分子质量/kDa	肽段数	序列覆盖率/%
STG	A0A7V9Q9I3	转谷氨酰胺酶家族蛋白(革兰氏阴性菌)	7.9	1	30.0
	A0A1D7U2Z7	转谷氨酰胺酶(博斯氏菌)	22.5	1	18.3
	Q9NZT1	类钙调蛋白 5(人类)	15.9	2	16.4
	A0A1J5QFX6	转谷氨酰胺酶(矿井排水宏基因组)	23.7	1	9.5
	A0A7S7LWI8	转谷氨酰胺酶样半胱氨酸肽酶(硫单胞菌)	24.8	1	8.6
BTG	A0A7V9Q9I3	转谷氨酰胺酶家族蛋白(革兰氏阴性细菌)	7.9	1	30.0
	A0A1D7U2Z7	转谷氨酰胺酶(博斯氏菌)	22.5	1	18.3
	Q9NZT1	类钙调蛋白 5(人类)	15.9	2	16.4
	M3B5I2	未知蛋白(茂原链霉菌)	21.0	1	11.1
	A0A1S1N855	转谷氨酰胺酶(边山假交替单胞菌)	26.7	1	10.8

40 STG ··-·BTG 30 Circular dichroism/mdeg 20 摩尔椭圆度 10 0 -10-20-30 190 240 200 210 220 230 波长 Wavelength/nm

表 3 STG/BTG 的二级结构含量

Table 3 The secondary structure content of

	%			
种类	α-螺旋	β-折叠	β-转角	无规卷曲
STG	26.6	42.2	4.0	27.2
BTG	25.4	35.4	13.6	25.6

余活性即可降低至 20.74%,10.13%,说明过高的温度会 破坏酶的活性结构,使得 TGase 的催化能力下降。鱿鱼、 环状芽孢杆菌 BL32 TGase 在 50 ℃保温 60 min 后,其残 余活性可分别保留 80%,90%左右^[15,23],明显高于相同条 件下的 STG 与 BTG,说明 TGase 耐热性因其来源而异。

Figure 5 Effects of temperature on the activity and the stability of STG and BTG

2.6 两种 TGase 的适宜反应 pH 及 pH 稳定性

由图 6 可知, STG 和 BTG 的适宜反应 pH 分别为 8.0,7.5, 二者在 pH 中性到弱碱性范围均具有较高活性, 与罗非鱼、鱿鱼 TGase 的适宜反应 pH 相近^[1,15], 而鳙鱼、 真鲷 TGase 的适宜反应 pH 分别为 6.5~7.0,9.0~ 9.5^[10,18], 这种差异可能与酶活测定方法中底物蛋白的结 构特性相关, 酪蛋白与单酰尸胺在 pH 7.5~8.0 范围内容 易结合^[24]。当 pH 为 7.5~8.0 时, 两种 TGase 放置 120 min 后仍保留 77%以上的残余活性; 而 pH 9.0 下孵 育 120 min 后,其残余活性均下降至 60%以下;当 pH 为 6.5 时,STG 和 BTG 在孵育 120 min 后残余活性分别为 51.42%,27.96%,说明两种 TGase 在偏离中性到弱碱性 范围的 pH 环境下稳定性变差。

2.7 金属离子对两种 TGase 活性的影响

由图 7 可知,低浓度(0~1 mmol/L)的 Ca^{2+} 可增强 两种淡水鱼 TGase 活性,可能是由于 Ca^{2+} 诱导酶的构象 发生改变,暴露出半胱氨酸活性基团,促进了酶与底物 的结 Ca^{2-3} 。完全激活 STG和 BTG的 Ca^{2+} 浓度均为

Figure 6 Effects of pH values on the activity and the stability of STG and BTG

1 mmol/L,与鳙鱼、草鱼等鱼类 TGase 的适宜 Ca²⁺浓度 相近^[9-10],而南极磷虾 TGase 的适宜 Ca²⁺浓度则为 10 mmol/L^[22]。Ca²⁺浓度过高,STG 和 BTG 活性均下 降,而鱿鱼 TGase 未发现有此抑制作用^[15]。综上,TGase 对 Ca²⁺的依赖性因其来源而异,鱼类和其他水生动物来 源的 TGase 存在明显差异。此外,酶促反应条件也会影 响 Ca²⁺对 TGase 的激活效果,EDTA 存在时完全激活 TGase 所需的 Ca²⁺浓度将增加;而少量 NaCl 存在时,完 全激活 TGase 的 Ca²⁺浓度明显降低^[15]。

由表 4 可知,金属离子 Cu²⁺、Ba²⁺、Zn²⁺、Mg²⁺ 对两 种 TGase 活性均呈浓度依赖性的抑制作用,且相同条件 下对 STG 和 BTG 的抑制效果相近,而不同金属离子对同

Table 4	Effects of metal ions on the activity of STG
	and BTG

表 4 金属离子对 STG/BTG 活性的影响[†]

人民页了	浓度/	相对酶活/%				
金周商丁	$(mmol \cdot L^{-1})$	STG	BTG			
Cu ²⁺	1	39.90 ± 0.46^{Ca}	38.84 ± 1.28^{Da}			
	5	$14.88 \pm 1.11^{\text{Cb}}$	$8.08 \pm 1.25^{\mathrm{Db}}$			
	10	1.60 ± 0.59^{C_c}	1.00 ± 0.40^{Dc}			
Ba^{2+}	1	$66.58 \!\pm\! 3.91^{Ba}$	53.76 ± 0.61^{Ca}			
	5	$14.91 \pm 0.67^{\text{Cb}}$	$11.58 \pm 0.64^{\text{Cb}}$			
	10	1.09 ± 0.57^{C_c}	2.80 ± 0.46^{Cc}			
Zn^{2+}	1	$85.08 \!\pm\! 2.32^{Aa}$	65.60 ± 2.08^{Ba}			
	5	50.82 ± 1.60^{Bb}	45.42 ± 0.06^{Bb}			
	10	$24.30 \!\pm\! 1.00^{Bc}$	33.54 ± 0.44^{Bc}			
Mg^{2+}	1	$87.02 \!\pm\! 1.31^{Aa}$	80.82 ± 2.48^{Aa}			
	5	$70.35 \!\pm\! 1.02^{Ab}$	69.58 ± 1.91^{Ab}			
	10	$66.22 \!\pm\! 0.58^{Ac}$	$67.21 \pm 0.64^{\mathrm{Ab}}$			

† 同种金属离子小写字母不同表示不同浓度之间存在显著性 差异(P<0.05);同一浓度下大写字母不同表示不同金属离 子之间存在显著性差异(P<0.05)。</p> 一 TGase 的活性抑制效果表现出明显差异。1 mmol/L 的 Cu²⁺和 Ba²⁺ 对两种 TGase 均表现出显著抑制作用 (P<0.05),当浓度增加至 10 mmol/L 时,酶活近乎完全 丧失;10 mmol/L 的 Zn²⁺可使两种 TGase 活性丧失 70% 左右;相同浓度的 Mg²⁺对 TGase 有轻微抑制作用。这与 其他水生动物来源 TGase 的性质相似^[7]。据报道,这些 金属离子可抑制鳙、草鱼和金线鱼 TGase 的活性^[9-11],而 不同金属离子与巯基亲和力的差异会影响酶活性中心与 底物的结合程度^[26],从而表现出对 TGase 不同的抑制 效率。

2.8 化合物对两种 TGase 活性的影响

由表 5 可知,同种化合物对两种淡水鱼 TGase 活性 的影响相似,而不同种类的化合物对 TGase 活性的影响 存在显著性差异(P < 0.05)。PMSF、NH₄ Cl、NEM 和 ETDA 4 种化合物对 STG 和 BTG 的活性均表现出浓度 依赖性的抑制作用。1 mmol/L 的 PMSF 可使 STG、BTG 活性丧失 50%,浓度达 10 mmol/L 时 TGase 活性近乎完 全丧失。罗非鱼 TGase 同样受到 PMSF 的抑制^[1],而红 海鲷 TGase 并未发现此作用^[18],可能是淡水鱼 TGase 的 活性位点含有组氨酸残基,PMSF 与之结合后导致活性 降低;10 mmol/L 的 NH₄ Cl 对 TGase 表现出较强的抑制 作用,是由于NH⁴₄ 是酰基转移反应的产物之一,通过外

表 5 化合物对 STG/BTG 活性的影响[†]

Table 5 Effect of compounds on the activity of STG and BTG

化入版	浓度/	相对酶活/%				
化合物	$(mmol \cdot L^{-1})$	STG	BTG			
PMSF	1.00	44.40 ± 1.80^{Ea}	46.22 ± 2.29^{E_8}			
	5.00	$15.75 \!\pm\! 0.63^{\mathrm{Eb}}$	$11.45\pm0.76^{\rm Eb}$			
	10.00	7.70 ± 0.50^{Ec}	4.00 ± 0.10^{Ec}			
$\mathrm{NH}_4\mathrm{Cl}$	1.00	$72.04 \!\pm\! 0.81^{Da}$	65.07 ± 2.20^{Ca}			
	5.00	$67.15 \pm 4.36^{\text{Cb}}$	$57.13 \pm 0.51^{\text{Cb}}$			
	10.00	$18.95 \pm 1.71^{\mathrm{Dc}}$	10.68 ± 0.31^{Dc}			
NEM	1.00	77.54 ± 1.99^{Ca}	55.39 ± 1.00^{Da}			
	5.00	$58.70 {\pm} 1.38^{\mathrm{Db}}$	$46.35 \pm 0.26^{\text{Db}}$			
	10.00	32.75 ± 1.39^{Cc}	34.90 ± 1.86^{Cc}			
EDTA	1.00	95.28 ± 1.07^{Ba}	93.30 ± 4.11^{Ba}			
	5.00	93.08 ± 1.03^{Ba}	88.43 ± 0.61^{Bb}			
	10.00	82.82 ± 2.49^{Bb}	83.99 ± 0.97^{Bb}			
DTT	1.00	123.51 ± 4.87^{Ac}	128.30 ± 3.87^{Ac}			
	5.00	181.41 ± 2.28^{Aa}	186.96 ± 3.50^{Aa}			
	10.00	141.92 ± 3.34^{Ab}	$140.30 \pm 1.00^{\mathrm{Ab}}$			

† 同种化合物小写字母不同表示不同浓度之间存在显著性差 异(P<0.05);同一浓度下大写字母不同表示不同化合物之 间存在显著性差异(P<0.05)。</p> 源添加过量的 NH⁴ 可以逆转 TGase 的催化作用,从而降 低酶活;NEM 是一种巯基烷化剂,当其浓度为 10 mmol/L 时,两种 TGase 的活性均丧失 60%以上,进一步验证了鲢 鱼、青鱼 TGase 的活性位点具有巯基基团;金属离子螯合 剂 EDTA 对 TGase 表现出微弱的抑制作用,10 mmol/L EDTA 浓度下,两种 TGase 的活性仍保留 80%左右,与 EDTA 络合 Ca²⁺ 后导致 TGase 活性未能被完全激发有 关;DTT 在 0~10 mmol/L 范围内均可显著增强两种 TGase 的活性,当浓度为 5 mmol/L 时增强效果最显著, 与草鱼 TGase 的性质相似^[9],这是由于 DTT 作为一种还 原剂,能防止酶活性位点的巯基基团被氧化。

2.9 两种 TGase 的热失活动力学

STG和BTG在25℃下活性无明显变化,故对37~ 50 ℃范围内酶的热失活动力学进行研究。采用一级指数 衰减动力学方程拟合 TGase 随孵育温度及时间的变化曲 线,得到热失活动力学参数如表 6 所示,拟合方程的 R²均 >0.9,说明模型拟合效果良好。随着温度的上升,两种 TGase 的衰减常数 k 增加,半衰期 t1/2 缩短,表明温度升 高,TGase的失活速度加快。在 37,45 ℃下,STG 和 BTG 的 k 值均<0.01 min⁻¹, 而 50 ℃时 k 值明显增大, 二者的 半衰期缩短,分别为 36.9,33.0 min,与吸水链霉菌 TGase 性质相似,但远低于环状芽孢杆菌 BL32 TGase,后者在 50 ℃下 *t*_{1/2} 可长达 12 h^[23,27]。STG 和 BTG 的 *E*_a值分别 为 2.12, 2.26 kJ/mol, 而环状芽孢杆菌 BL32 TGase 的 E_a 值为 350.5 kJ/mol^[23],说明 STG 和 BTG 对温度的敏感 性相似,但与其他来源的 TGase 差异明显。E。值不仅与 TGase 的自身性质相关,环境条件及酶活测定方法也对 其有重要影响, Queirós 等^[28]研究发现微生物 TGase 在 其适宜 pH 6~7 范围内, E。值随压力的增加而降低, 而 pH<6时,E。值并未随压力的变化表现出明显差异。

表	6	STG/B1	G的失活动	ነታ	学参	数	
Table 6	Ina	ctivation	parameters	of	STG	and	BTG

抽米	温度/	\mathbf{D}^2	k /	$t_{1/2}/$	$E_{ m a}/$
竹矢	°C	K-	\min^{-1}	min	$(kJ \cdot mol^{-1})$
STG	37	0.947 55	0.001 95	355.5	
	45	0.946 14	0.009 52	72.8	2.12
	50	0.945 52	0.018 77	36.9	
BTG	37	0.977 78	0.001 78	389.4	
	45	0.990 96	0.006 75	102.7	2.26
	50	0.967 16	0.021 01	33.0	

3 结论

采用 80%硫酸铵盐析、Q-Sepharose FF 阴离子交换 和 Sephacryl S-200 HR 凝胶过滤层析可从鲢鱼和青鱼内 源性转谷氨酰胺酶(TGase)粗酶液中分别得到电泳纯的

鲢鱼 TGase 和青鱼 TGase,其比酶活和酶活收率分别为 14.34 U/mg、10.61%和 12.67 U/mg、8.31%,相对分子质 量分别为 96,94 kDa, 二者的肽段序列和 β-折叠含量差异 明显。鲢鱼 TGase 和青鱼 TGase 的适宜反应温度及 pH 分别为 50 ℃、pH 8.0 和 50 ℃、pH 7.5,适宜 Ca²⁺浓度均 为1 mmol/L,3 mmol/L 的二硫苏糖醇可最大程度提升 两种 TGase 的活性, 而 1 mmol/L 的 PMSF、Cu²⁺、Ba²⁺ 和 10 mmol/L 的 NH₄ Cl、N-乙 基 马 来 酰 亚 胺、Zn²⁺、 Mg^{2+} 、乙二胺四乙酸会使两种 TGase 的活性降低。在 37~50 ℃范围,鲢鱼 TGase 和青鱼 TGase 的热失活行为 均符合一级指数衰减动力学方程,温度升高,TGase的失 活速率加快,半衰期缩短,二者的活化能 E。值相近,分别 为 2.12,2.26 kJ/mol。综上,鲢鱼和青鱼两种食性淡水鱼 TGase 的一级结构及二级结构差异明显,但适宜反应条 件及热失活动力学特征相似。由此可推测,鲢鱼和青鱼 鱼糜凝胶特性存在差异的主要原因并非是 TGase 的酶学 性质,可能与 TGase 的底物蛋白即肌球蛋白的结构有关, 后续可对不同食性淡水鱼 TGase 交叉诱导肌球蛋白交联 性质的差异进行深入研究。

参考文献

- WORRATAO A, YONGSAWATDIGUL J. Purification and characterization of transglutaminase from tropical tilapia (Oreochromis niloticus) [J]. Food Chemistry, 2005, 93(4): 651-658.
- [2] 沈晓蕾,李向红,俞健,等.大豆分离蛋白、木薯淀粉与转谷氨 酰胺酶组合对鲢鱼鱼糜凝胶品质的影响[J].食品与机械,2019, 35(9):26-31.

SHEN X L, LI X H, YU J, et al. Effect of combination of soy protein isolate, tapioca starch and transglutamin-ase on gel quality of carp surimi[J]. Food & Machinery, 2019, 35(9): 26-31.

[3] 贾丹, 刘茹, 刘明菲, 等. 转谷氨酰胺酶对鳙鱼糜热诱导胶凝特
 性的影响[J]. 食品科学, 2013, 34(9): 37-41.

JIA D, LIU R, LIU M F, et al. Effect of transglutaminase on heatinduced gel properties of bighead carp (Aristichthys nobilis) surimi[J]. Food Science, 2013, 34(9): 37-41.

- [4] 张梦玲,张晋,熊善柏,等.转谷氨酰胺酶及其在鱼糜制品加工中的应用[J]. 食品研究与开发, 2016, 37(24): 190-195.
 ZHANG M L, ZHANG J, XIONG S B, et al. Transglutaminase and its application in processing of surimi product[J]. Food Research and Development, 2016, 37(24): 190-195.
- [5]何立,李细毛,胡冰悦,等.3种鱼糜蛋白质特性及油炸特性比较[J].食品与机械,2022,38(6):40-44.

HE L, LI X M, HU B Y, et al. Comparative study on protein and frying characteristics of three surimi[J]. Food & Machinery, 2022, 38(6): 40-44.

[6] 贾丹. 青鱼肌肉蛋白质及其凝胶特性的研究[D]. 武汉: 华中农 业大学, 2016: 36.

JIA D. Study on protein and gelation properties of surimi from

black carp[D]. Wuhan: Huazhong Agricultural University, 2016: 36.

- [7] ZHANG Y, SIMPSON B K. Food-related transglutaminase obtained from fish/shellfish [J]. Critical Reviews in Food Science and Nutrition, 2020, 60(19): 3 214-3 232.
- [8] 李金玲, 叶蕾蕾, 尤娟, 等. 鲢内源性转谷氨酰胺酶的纯化及其 性质[J]. 华中农业大学学报, 2018, 37(6): 105-112.
 LI J L, YE L L, YOU J, et al. Purification and some enzymatic properties of transglutaminase from silver carp [J]. Journal of Huazhong Agricultural, 2018, 37(6): 105-112.
- [9] 孙静静, 罗自生, 吴翔, 等. 草鱼中内源性转谷氨酰胺酶特性的研究[J]. 中国食品学报, 2012, 12(9): 67-72.
 SUN J J, LUO Z S, WU X, et al. Study on the characterization of transglutaminase from grass carp[J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(9): 67-72.
- [10] 娄忠纬, 徐坤华, 王潇, 等. 鏞内源性转谷氨酰胺酶特性的研究[J]. 南方水产科学, 2014, 10(6): 72-77.
 LOU Z W, XU K H, WANG X, et al. Characteristics of transglutaminase from bighead carp [J]. South China Fisheries Science, 2014, 10(6): 72-77.
- [11] HEMUNG B O, YONGSAWATDIGUL J. Partial purification and characterization of transglutaminase from threadfin bream (Nemipterus sp.) liver[J]. Journal of Food Biochemistry, 2008, 32 (2): 182-200.
- [12] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent [J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
- [13] 王耀冉,赵妍,陈明杰,等.8种食用菌蛋白及其酶解产物抗氧 化活性研究[J]. 食品与机械, 2022, 38(9): 134-138, 152.
 WANG Y R, ZHAO Y, CHEN M J, et al. Study on antioxidant activities of proteins and enzymatic hydrolysates of eight edible fungi[J]. Food & Machinery, 2022, 38(9): 134-138, 152.
- [14] ALHASANI H A W, AL-YOUNIS Z K. Extraction, purification and characterization of transglutaminase from some plants[J]. IOP Conference Series: Earth and Environmental Science, 2021, 910: 012061.
- [15] NOZAWA H, CHO S Y, SEKI N. Purification and characterization of transglutaminase from squid gill[J]. Fisheries Science, 2001, 67 (5): 912-919.
- [16] SIRIKHARIN R, SÖDERHÄLL I, SÖDERHÄLL K. Characterization of a cold-active transglutaminase from a crayfish, Pacifastacus leniusculus [J]. Fish & Shellfish Immunology, 2018, 80: 546-549.
- [17] LAKSONO U T, SUPRIHATIN, NURHAYATI T, et al. Purification of endogenous transglutaminase from daggertooth pike conger fish (Muraenesox cinerus) meat [J]. International Food Research Journal, 2021, 28(5): 1 030-1 037.
- [18] YASUEDA H, KUMAZAWA Y, MOTOKI M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major) [J]. Bioscience, Biotechnology, and

Biochemistry, 1994, 58(11): 2 041-2 045.

- [19] NOGUCHI K, ISHIKAWA K, YOKOYAMA K, et al. Crystal structure of red sea bream transglutaminase [J]. Journal of Biological Chemistry, 2001, 276(15): 12 055-12 059.
- [20] 崔文璟, 杜坤, 周丽, 等. 吸水链霉菌谷氨酰胺转氨酶两种同源异形体的鉴定及性质分析[J]. 中国生物制品学杂志, 2013, 26(7): 949-953.

CUI W J, DU K, ZHOU L, et al. Identification and properties of two isoforms of Streptomyces hygroscopicus transglutaminase[J]. Chinese Journal of Biologicals, 2013, 26(7): 949-953.

- [21] SIDAURUK W S, TATI N, SUPTIJAH P, et al. Characterization of endogenous transglutaminase enzyme of yellow pike conger's liver
 [J]. Jurnal Pengolahan Hasil Perikanan Indonesia, 2017, 20: 582.
- [22] ZHANG Y, HE S, SIMPSON B K. A cold active transglutaminase from antarctic krill (Euphausia superba): Purification, characterization and application in the modification of cold-set gelatin gel[J]. Food Chemistry, 2017, 232: 155-162.
- [23] DE SOUZA C F V, FACCIN D J L, MERTINS O, et al. Kinetics of thermal inactivation of transglutaminase from a newly isolated bacillus circulans BL32 [J]. Journal of Chemical Technology & Biotechnology, 2009, 84(10): 1 567-1 575.
- [24] ZHANG Y, LI C, GEARY T, et al. Contribution of special structural features to high thermal stability of a cold-active transglutaminase[J]. Journal of Agricultural and Food Chemistry, 2020, 68(30): 7 935-7 945.
- [25] BINSI P K, SHAMASUNDAR B A. Purification and characterisation of transglutaminase from four fish species: Effect of added transglutaminase on the viscoelastic behaviour of fish mince[J]. Food Chemistry, 2012, 132(4): 1 922-1 929.
- [26] WANG B, WANG A, CAO Z, et al. Characterization of a novel highly thermostable esterase from the gram-positive soil bacterium streptomyces lividans TK64 [J]. Biotechnology and Applied Biochemistry, 2016, 63(3): 334-343.
- [27] CUI L, DU G, ZHANG D, et al. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus[J]. Food Chemistry, 2007, 105: 612-618.
- [28] QUEIRÓS R P, GOUVEIA S, SARAIVA J A, et al. Impact of pH on the high-pressure inactivation of microbial transglutaminase[J]. Food Research International, 2019, 115: 73-82.