超高效液相色谱—串联质谱法同时测定动物 源性食品中 21 种全氟类化合物残留

Simultaneous determination of 21 perfluorinated compounds in animal-derived food by UPLC-MS/MS

唐韵熙^{1,2} 白亚敏^{1,2} 刘露露^{1,2} 余 洁^{1,2}

TANG Yun-xi^{1,2} BAI Ya-min^{1,2} LIU Lu-lu^{1,2} YU Jie^{1,2}

(1. 重庆市食品药品检验检测研究院,重庆 401120;

2. 国家市场监管重点实验室〔调味品监管技术〕,重庆 401120〕

(1. Chongqing Institute for Food and Drug Control, Chongqing 401120, China; 2. State Key Laboratory of Market Regulation [Condiment Supervision Technology], Chongqing 401120, China)

摘要:目的:建立超高效液相色谱—串联三重四极杆质谱 (UPLC-MS/MS)同时测定动物源性食品中 21 种全氟类 化合物残留的液质联用检测方法。方法:样品经 1%甲 酸—乙腈提取, C_{18} 、N-丙基乙二胺(PSA)和石墨化碳黑 (GCB)净化,通过 Waters Acquity UPLC[®] BEH C_{18} 色谱 柱分离,采用甲醇—5 mmol/L 乙酸铵水溶液梯度洗脱, 多反应监测(MRM)模式监测,采用电喷雾负离子扫描。结 果:21 种全氟类化合物在 0.2~10.0 ng/mL 范围内线性关 系良好,定量限(S/N=10)为 0.25 µg/kg,在 0.25,0.50, 1.25 µg/kg 3 个加标量下,平均回收率为 71%~118%,批 内精密度为 3.5%~18.3% (n = 6);批间精密度为 2.2%~13.8%(n = 3)。结论:该方法前处理简单快速,灵 敏度高,可以满足动物源性食品中全氟类化合物快速、准 确的检测要求。

关键词:超高效液相色谱—串联质谱;动物源性食品;全 氯类化合物

Abstract: Objective: To established a method for determination of 21 perfluorinated compounds in animal-derived food by ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Methods: The sample was extracted with 1% formic acid-acetonitrile, cleaned up with a sorbent mixture of *N*-propylethylenediamine (PSA), octadecyl bonded silica gel (C₁₈) and graphitized carbon black (GCB), then separated by

收稿日期:2022-12-19 改回日期:2023-05-04

acetonitrile-5mmol/L ammonium acetate aqueous solution and Acquity UPLC[®] BEH C₁₈, detected by liquid chromatography tandem mass spectrometry in negative mode using the multiple reaction monitoring (MRM) mode. **Results**: The calibration curves were linear in the range of $0.2 \sim 10$ ng/mL for the 21 PFAS. The limits of quantification were $0.25 \ \mu g/kg$. Average recoveries were in the range of $71\% \sim 118\%$ with three spiked levels, namely 0.25, 0.50, 1.25 $\mu g/kg$. The relative standard deviations (RSDs%) of inter-batch and intra-batch were $3.5\% \sim$ 18.3% (n = 6) and $2.2\% \sim 13.8\%$ (n = 3), respectively. **Conclusion**: The simple pretreatment and high sensitivity satisfied the fast and accurate detection requirement, meanwhile it is suitable for qualitative and quantitative analysis of perfluorinated compounds in animal-derived food.

Keywords: liquid chromatography-tandem mass spectrometry; animal-derived food; perfluorinated compounds

全氟/多氟类化合物(PFAS)是一种人工合成的有机 氟化物,其分子中氟原子全部或部分取代与碳连接的氢 原子,因其毒性以及在环境和生物体中的广泛存在而成 为全球关注的热点^[1]。PFAS分子通式为(F(CF₂)*x*)R, 根据末端基团差异,可分为全氟烷基羧酸(PFSAS)和全 氟烷基磺酸(PFCAs),其中全氟辛烷羧酸(PFOA)和全氟 辛烷磺酸(PFOS)是目前检出率最高的两类含有 8 个碳 原子的全氟化合物^[2-3]。由于 PFCS 中 C—F 键极高化 学键能,使得该类化合物具有强化学稳定性、高表面活 性,被广泛应用于食品接触材料、纺织品、不粘锅涂层、阻 燃剂等工业和消费品领域中;同时也由于不易降解,且容 易通过食物链造成生物体的富集作用,使其成为目前新 型的持久性环境污染物。其污染的主要来源是 PFAS 的

基金项目:重庆市科学技术局计划项目(编号:cstc2021jxjl00022) 作者简介:唐韵熙,女,重庆市食品药品检验检测研究院高级工程 师,硕士。

通信作者:白亚敏(1977—),女,重庆市食品药品检验检测研究院 高级工程师,硕士。E-mail:965241582@qq.com

生产、使用、排放以及通过大气等介质的迁移^[4-5]。目前 国内外学者已在水体^[6-7]、水产品^[8]、畜禽类产品^[9-10]、 果蔬^[11]等中检测出不同类别的全氟类化合物。通过饮食 摄入 PFAS 暴露的食品,会在一定程度上影响人体生长 发育,如引起血糖代谢障碍问题^[12]、脂肪性肝病^[13]、生殖 毒性^[14]等。欧洲食品安全局(EFSA)对4种 PFAS规定 每周允许摄入量(TWI)为8 ng/kg BW(全氟辛酸、全氟 任酸、全氟己烷磺酸和全氟辛烷磺酸的总和)并更新了食 品中 PFOA 和 PFOS 的 TWI 为 13,6 ng/kg BW (PFOA)^[15-16]。

由于 PFSAs 和 PFCAs 没有合适的发色基团且不容 易挥发,液相色谱一串联质谱是目前检测全氟化合物最 常用的分析方法[17-19]。若使用气相色谱或气相色谱— 质谱法,需要将 PFASs 衍生化生成甲基酯类化合物而进 行检测,该前处理过程复杂,且容易引入干扰物,降低结 果稳定性,因此使得该方法在使用范围上受到限制。 PFASs 常用的前处理方法有液液萃取、液固萃取、固相萃 取、分散固相萃取等。前3种方法存在溶剂使用量大、耗 时长、重现性差的确定。目前已有将分散固相萃取法 (QuEchERs)应用到动物源性食品的检测,如李静等^[20] 运用该方法检测了鸡蛋中16种全氟化合物;王莹等[21]用 改进的 QuEChERs 方法对猪、牛、羊的肌肉、肝、肾进行了 13 种全氟化合物的检测。但是上述方法或是基质单一, 或是全氟类化合物种类少。因此,研究建立同时检测鸡 肉、鸭肉、鸡肝、鸭肝、鸡蛋、鸭蛋6种基质中21种全氟类 化合物多残留高通量检测方法,根据研究对象高脂肪、高 蛋白的属性,采用改进的 QuEChERS 方法对样品进行提 取和净化,以期能够实现大批量样品高效、准确测定,并 广泛应用于动物源性食品中多种 PFASs 检测分析。

1 材料与方法

1.1 材料与仪器

1.1.1 材料与试剂

甲醇、乙腈:质谱纯,德国 Merck 公司;

甲酸:质谱纯,美国 Sigma 公司;

无水硫酸钠、氯化钠、乙酸铵:分析纯,重庆川东化工 有限公司;

N-丙基乙二胺固相吸附剂(PSA)、十八烷基硅烷键 合硅胶(C₁₈):40 μm,美国安捷伦公司;

石墨化炭黑(GCB):100 μm,纳谱分析技术(苏州)有限公司;

实验室用水:Milli-Q去离子水,美国 MIllipore 公司;
全氟丁酸(PFBA)、全氟丁酸磺酸钾(PFBS)、全氟戊
酸(PFPeA)、全氟戊烷磺酸钠(PFPeS)、全氟己酸
(PFHxA)、全氟己烷磺酸钠(PFHxS)、全氟庚酸
(PFHPA)、全氟庚烷磺酸钠(PFHps)、全氟辛酸
(PFOA)、全氟辛烷磺酸钠(PFOS)、全氟壬酸(PFNA)、

全氟壬烷磺酸钠(PFNS)、全氟癸酸(PFDA)、全氟癸烷磺 酸钠(PFDS)、全氟十一烷酸(PFUdA)、全氟十二烷酸 (PFDoA)、全氟十二磺酸钠(PFDoS)、全氟十三烷酸 (PFTrDA)、全氟十四烷酸(PFTeDA)、全氟十六烷酸 (PFTrDA)、全氟十八烷酸(PFTeDA)、全氟十六烷酸 (PFHxDA)、全氟十八烷酸(PFODA) 21 种全氟化合物 混合标准储备溶液:质量浓度均为 2 μ g/mL,加拿大 Wellington公司;

 ${}^{13}C_4-2$ 氟 丁 酸 (MPFBA)、 13 C₂-2 氟 己 酸 (MPFHxA)、 ${}^{18}O_2-2$ 氟己烷磺酸钠(MPFHxS)、 ${}^{13}C_4-2$ 氟辛酸(MPFOA)、 ${}^{13}C_4-2$ 氟辛烷磺酸钠(MPFOS)、 ${}^{13}C_5-2$ 氟壬酸(MPFNA)、 ${}^{13}C_2-2$ 氟癸酸(MPFDA)、 ${}^{13}C_2-2$ 氟十一烷酸(MPFUdA)、 ${}^{13}C_2-2$ 氟十二烷酸(MPFDoA) 9 种混合同位素内标储备液:质量浓度均为 2 μ g/mL,加 拿大 Wellington 公司;

样品鸡肉、鸡肝、鸡蛋、鸭肉、鸭肝、鸭蛋:重庆市某城 区禽类养殖场;

阴性基质:重庆市食品药品检验检测研究院。

1.1.2 主要仪器设备

液相色谱仪:安捷伦 1290 Infinity型,美国安捷伦公司;

三重四极杆串联质谱仪:AB SCIEX 5500型,美国 AB SCIEX 公司;

冷冻离心机:3-30KS型,德国 Sigma 公司;

涡旋仪:ML-886型,海门市其林贝尔仪器公司;

全自动浓缩仪:Turbovap LV 型,英国 Biotage 公司;

超纯水系统: Milli-q reference 型,美国 MILLIPORE 公司;

电子分析天平: MSA225S-100-DU 型, 德国 Sartorius 公司。

1.2 方法

1.2.1 标准溶液的配制

(1)混合标准工作溶液配制:准确移取 2 µg/mL 21种全氟化合物混合标准储备溶液 0.5 mL,置于 10 mL 容量瓶中,用甲醇定容至刻度,配制成 100 ng/mL 的混合 标准工作液,存储于-20 ℃冰箱中,有效期为 3 个月。

(2)混合内标工作溶液配制:准确移取 2 μg/mL 9 种 混合同位素内标储备液 0.5 mL,置于 10 mL 容量瓶中, 用甲醇定容至刻度,配制成 100 ng/mL 的混合内标标准 工作液,存储于-20 ℃冰箱中,有效期为 3 个月。

1.2.2 提取溶剂的优化 称取 2 g(精确至 0.01 g)样品置 于 50 mL 聚丙烯离心管中,加入 100 ng/mL 混合内标工 作溶液 50 μL,加入 2 mL 水,振荡涡旋 2 min,分别用 10 mL 乙腈、1%甲酸乙腈、甲醇、1%甲酸甲醇溶液振荡 提取 5 min,加入 1 g 氯化钠,2 g 无水硫酸镁,迅速振摇 5 min,8 000 r/min 离心 10 min,将上清液全部转移至净 化管中(含有 80 mg C₁₈、40 mg PSA、20 mg GCB),振荡 涡旋 1 min,8 000 r/min 离心 10 min,取 4 mL 上清液于 40 ℃氮吹至近干,1 mL 甲醇定容,过 0.22 μm 滤膜, 待测。

1.2.3 净化剂的优化 称取 2 g(精确至 0.01 g)样品置于 50 mL 聚丙烯离心管中,加入 100 ng/mL 混合内标工作 溶液 50 μ L,加入 2 mL 水,振荡涡旋 2 min,用 1%甲酸乙 腈溶液振荡提取 5 min,加入 1 g 氯化钠,2 g 无水硫酸镁,迅速振摇 5 min,8 000 r/min 离心 10 min,将上清液全部 转移至 A:含有 0,20,40,80,100 mg 的 C₁₈净化管中,B: 在最优 C₁₈含量基础上,含有 0,10,20,40,80 mg 的 PSA; C:在最优 C₁₈ 和 PSA 含量基础上,含有 0,10,20,40, 80 mg 的 PSA; C:在最优 C₁₈ 和 PSA 含量基础上,含有 0,10,20,40, 60 mg 的GCB;振荡涡旋 1 min,8 000 r/min 离心10 min,取 4 mL 上清液于 40 ℃氮吹至近干,1 mL 甲醇定容,过 0.22 μ m 滤膜,待测,考察 21 种 PFAS 的提取效率,确定 3 种净化剂的最终比例。

1.2.4 液相色谱与质谱条件的优化

(1)液相色谱条件:为了获得更好的灵敏度和色谱分 离效果,通过查阅相关文献^[21-22],发现全氟类化合物多 以较低硅羟基活性填料的 C_{18} 柱分离,因此,试验比较 Waters Acquity UPLC[®] BEH C_{18} (2.1 mm×100 mm, 1.7 μm)与 Agilent SB-Aq RRHD C_{18} (2.1 mm× 100 mm,1.8 μm)两种色谱柱的分析性能;并比较甲醇/ 水(含 2 mmol/L 乙酸铵)、甲醇/水(含 5 mmol/L 乙酸 铵)、甲醇/水、乙腈/水分别作为流动相对目标化合物分 离效果及灵敏度差异的影响,从而选取最优流动相体系。 柱温 40 °C;流量 0.3 mL/min;进样量 2 μL。

(2)质谱条件:电喷雾(ESI)离子源,负离子模式;扫 描模式:多反应监测(MRM);离子源温度 550 ℃;离子源 电压 5 500 V;气帘气压力 0.24 MPa;雾化器(GAS₁) 0.38 MPa;辅助气(GAS₂)55 MPa;选定 21 种目标化合物 及 9 种内标物质的监测离子对,优化去簇电压(DP)和碰 撞能(CE)。

1.2.5 基质效应(ME)的确定 用经样品前处理(1.2.1、 1.2.2)的阴性基质样液配制目标化合物标准溶液,按 1.2.3条件进行测定,以目标物的浓度(X)与相应的峰面 积(Y)绘制标准曲线,按照式(1)来评价 6种基质的基质 效应。结果为负表示基质抑制效应,结果为正表示基质 增强效应。当 ME 为 $-20\% \sim 20\%$ 时为弱基质效应,ME 为 $-50\% \sim -20\%$ 或 $20\% \sim 50\%$ 时为中等基质效应,当 ME< -50%或> 50%时为强基质效应^[23]。

$$M_{\rm E} = \frac{A - B}{B} \times 100\%, \qquad (1)$$

式中:

M_E——基质效应,%;

A---基质匹配标准曲线的斜率;

B---溶剂标准曲线的斜率。

1.2.6 方法学验证

(1) 线性范围及灵敏度:在经 1.2.1、1.2.2 方法处理

后的 6 种空白基质提取液中加入适量 21 种全氟化合物 混合标准工作溶液及 9 种混合内标工作溶液,配制成浓 度为 0.2,0.4,1.0,2.0,4.0,10.0 ng/mL 的基质加标溶液 依次进样,以目标物的质量浓度(X)与相应的峰面积(Y) 进行线性回归,1/x 为权重,计算阴性基质中添加标准品 的信噪比,以 S/N≥10 作为方法定量限。

(2)回收率与精密度:在6种阴性样品中分别添加 0.25,0.50,1.25 μg/kg 含量的 PFAS 混合标准工作溶液, 按照该方法平行测定6次,连续测定3d,计算加标回收 率以及批内、批间标准偏差。

2 结果与分析

2.1 提取条件的确定

比较了乙腈、1%甲酸一乙腈、甲醇、1%甲酸一甲醇 4种提取溶剂对6种基质中21种目标化合物提取效率的 影响(结果见图1)。经试验表明,乙腈的提取效率高于甲 醇,21种全氟化合物在乙腈环境下,脂肪、蛋白质类化合 物的沉淀效果较好,从而降低了提取液的基质效应,提取 溶液澄清,除在鸡肝和鸭肝中,PFTrDA、PFHxDA和 PFODA3种长链化合物回收率小于60%,其他化合物回 收率均在60%与125%之间。在乙腈中加入1%甲酸,通 过调节体系的pH值,破坏基质的组织细胞结构,使目标 物与结合蛋白解离,从而加强目标物转移到乙腈层中的 效率,提高提取回收率。在以1%甲酸一乙腈作为提取溶 剂下,21种化合物在6种基质中的回收率为70%~ 120%。因此,兼顾各类目标物的提取效率以及净化效 果,最终采用1%甲酸一乙腈作为样品基础提取溶液。

2.2 净化条件的确定

样品经酸化乙腈提取后,能除去大部分的蛋白质,但 还有少量共萃物被萃取出,如:有机酸、色素等,这些物质 会对分析造成干扰,需进一步净化。采用优化的 QuEChERS方法对样品进行分散固相萃取,通过加入不 同比例的 C₁₈、PSA、GCB 从而吸附样品中脂肪和酯类、碳 水化合物、有机酸、色素、甾醇等非目标物质,从而达到净 化目的^[23]。

试验发现, PFPeS、PFHpS、PFDOS、PFTrDA 4 种氟 化物的提取效率在 C_{18} 、PSA、GCB 用量分别为 40,20, 20 mg 时最优,回收率为 78%~110%;之后随着净化剂 用量的增加而逐渐降低,回收率低于 60%;其余 17 种全 氟化合物则是在 C_{18} 、PSA、GCB 用量分别为 80,40, 20 mg 时提取效率最优,回收率为 76%~109%。因此, 检测 PFPeS、PFHpS、PFDOS、PFTrDA 4 种氟化物时,采 用的净化剂用量分别为 C_{18} 40 mg、PSA 20 mg、GCB 20 mg;检测其余 17 种氟化物时,采用的净化剂用量分别 为 C_{18} 80 mg、PSA 40 mg、GCB 20 mg。

2.3 液相色谱与质谱条件的确定

2.3.1 色谱条件优化 通过比较21种全氟类化合物和

图 1 不同提取溶剂对 6 种基质中 21 种全氟类化合物提取效率的影响 Figure 1 Extraction efficiencies of 21 PFAS in six matrixes by different extraction solvent

9种内标在两种色谱柱上的峰形、分离度、响应值等性能, 结果发现目标物在 Acquity UPLC[®] BEH C₁₈ 色谱柱上的 灵敏度更高,结果见图 2。21 种目标化合物在两种色谱 柱上的峰形和分离度一致。因此,采用 Acquity UPLC[®] BEH C₁₈ 色谱柱。 21 种全氟化合物及其内标物质在以甲醇和水作为流动相,灵敏度最好,但峰展宽拖尾,在水相中加入适量乙酸铵能够较好地改善峰型,当乙酸铵浓度为 5 mmol/L时,色谱峰型和灵敏度都为最优(见图 3)。这可能是因为加入乙酸铵作为缓冲盐调节流动相pH值,促进了目标化

Figure 2 Comparison of peak area of standard solution (20 ng/mL) by different chromatographic column

- 图 3 甲醇—2 mmo/L 乙酸铵水溶液、甲醇—5 mmo/L 乙酸铵水溶液流动相条件下的标准溶液 (20 ng/mL)峰面积比较
- Figure 3 Comparison of peak area of standard solution (20 ng/mL) in methanol-2 mmol/L ammonium acetate and methanol-5 mmol/L ammonium acetate mobile phase system

合物的离子化效率,同时也改善了色谱峰型。因此,选择 甲醇/水(含 5 mmol/L 乙酸铵溶液)为流动相,流动相梯 度为:流动相 A:5 mmol/L 乙酸铵水溶液;流动相 B:甲 醇。梯度洗脱程序:0~0.5 min,40% B;0.5~2.0 min, 40%~90% B;2.0~6.0 min,90% B;6.0~6.1 min, 90%~40% B;6.1~8.0 min,40% B。21 种化合物的色 谱图见图 4。

2.3.2 质谱条件优化 由于全氟类化合物为酸性化合物,全氟羧酸类带有 COO^- ,全氟磺酸类带有 SO_3^{2-} ,难于 质子化,故采用 ESI^- 模式进行扫描。通过流动注射泵进 样,对质量浓度为20 ng/mL的21种化合物和9种内标 混合标准溶液进行一级质谱扫描,发现全氟磺酸和全氟 羧酸化合物都容易产生较强的 $[M-H]^-$ 分子离子峰;因 此通过优化去簇电压(DP),确定 $[M-H]^-$ 为其母离子; 在二级质谱中,通过优化碰撞能(CE),全氟磺酸类化合物 可以产生丰度较高的磺酸基碎片 $[SO_3]^-$,m/z=80,以及 不同数量 C—C 键断裂形成的全氟磺酸基碎片 $[C_4F_8 - SO_3]^-$, $[C_3F_6 - SO_3]^-$, $[CF_2 - SO_3]^-$, $[FSO_3]^-$;全氟 羧酸类化合物则容易丢失准分子离子,m/z = 44,生成 $[M-H-CO_2]^-$,进而通过不同数量 C—C 断裂形成 $[C_6F_{13}]^-$, $[C_5F_{11}]^-$, $[C_4F_9]^-$, $[C_3F_7]^-$, $[C_2F_5]^-$ 等碎 片。最终优化后的 21 种化合物和 9 种内标物质的定性 和定量特征离子以及相应的质谱参数见表 1。

2.4 基质效应

由表 2 可知,在鸡蛋、鸭蛋、鸡肉、鸭肉、鸡肝、鸭肝6 种 基质中,21 种全氟类化合物的基质效应分别为 0.4%~ 49.4%,0.5%~42.8%,2.1%~70.1%,3.5%~67.5%,

1. PFBA 2. PFPeA 3. PFBS 4. PFHxA 5. PFPeS 8. PFOA 6. PFHpA 7. PFH_xS 9. PFHps 10. PFNA 11. PFOS 12. PFDA 13. PFNS 14. PFUdA 15. PFDS 16. PFDoA 18. PFDoS 17. PFTrDA 19. PFTeDA 20. PFHxDA 21. PFODA

图 4 21 种化合物(20 ng/mL)的总离子流图 Figure 4 The TIC chromatogram of 21 compounds (20 ng/mL)

1.2%~50.7%,0.3%~48.2%,不同化合物在不同的基质 中呈不同的基质增强或基质抑制效应,蛋和肝中都含有 较丰富的蛋白质、脂肪等内源性干扰物质,在前处理过程 中也会引入酸、盐等外源性物质,当这些物质与目标化合 物共流出,会使定性定量结果不准确,故研究最终采用基 质标准曲线来提高试验的准确性。

2.5 方法学评价

试验结果表明,21 种化合物在 6 种基质中得到的线 性关系良好(以典型的 3 种基质:鸡蛋、鸡肉、鸭肝为例, 见表 3),定量限为 0.25 μg/kg,满足检测要求。由表4可

表 1 30 种化合物的质谱参数⁺

Tabl	.e 1	MS	parameters	of	the 30	compounds
------	------	----	------------	----	--------	-----------

化合物	母离子 (m/z)	子离子 (m/z)	去簇电压/V	碰撞能/eV	化合物	母离子 (m/z)	子离子 (m/z)	去簇电压/V	碰撞能/eV
PFBA	213.1	169.0*	-35	-12	PFUdA	563.2	518.9 *	-60	-15
PFBS	299.2	79.9*	-40	-63			219.0		-26
		98.8		-40	PFDoA	613.1	568.9 *	-60	-17
PFPeA	263.2	218.9 *	-40	-12			169.1		-34
PFPeS	349.2	79.8*	-50	-76	PFDOS	699.1	79.8 *	-60	-110
		98.8		-39	PFTrDA	663.1	619.0 *	-60	-17
PFHxA	313.2	268.9*	-35	-12			168.9		-36
PFH _x S	399.2	98.7 *	-70	-79	PFTeDA	713.1	669.1 *	-70	-19
		79.8		- 89			168.8		-38
PFHpA	363.2	319.1 *	-40	-13	PFHxDA	813.1	768.9 *	-70	-19
		168.8		-22			168.7		-40
PFHpS	449.2	79.7*	-70	-110	PFODA	913.1	869.1*	-70	-22
		98.7		-81			168.7		-42
PFOA	413.1	369.1*	-56	-14	MPFBA	217.1	171.9 *	-36	-13
		168.8		-25	MPFHxA	315.2	270.0*	-40	-12
PFOS	499.2	79.7*	-60	-106	MPFH _x S	403.2	84.0 *	-70	-80
		99.0		-91			103.0		-80
PFNA	463.2	419.1 *	-55	-14	MPFOA	417.2	372.0*	-50	-15
		218.9		-23	MPFOS	503.1	79.8 *	-60	-115
PFNS	549.1	79.7*	-80	-124			98.8		-102
		98.9		-111	MPFNA	468.2	423.0 *	-50	-15
PFDA	513.2	468.9 *	-60	-15	MPFDA	515.1	470.1 *	-50	-16
		219.0		-24	MPFUdA	565.1	520.0 *	-50	-16
PFDS	599.1	79.9*	-80	-140	MPFDoA	615.1	570.0*	-50	-16
		98.9		-120					

† * 定量离子。

表 2 21 种全氟类化合物的基质效应

Table 2 The matrix effects of 21 perfluorinated compounds

%

									-				
化合物	鸡蛋	鸭蛋	鸡肉	鸭肉	鸡肝	鸭肝	化合物	鸡蛋	鸭蛋	鸡肉	鸭肉	鸡肝	鸭肝
PFBA	-5.8	-8.4	-18.4	-17.2	-1.8	-3.1	PFNS	-49.4	-35.1	-70.1	-67.5	-14.4	-16.3
PFPeA	20.8	22.4	42.4	44.6	50.7	47.5	PFDA	23.5	20.8	22.8	25.4	18.1	16.2
PFBS	-14.2	12.3	8.3	11.6	-19.1	-24.0	PFDS	-6.2	-7.2	-9.2	-7.1	21.9	20.0
PFHxA	-31.0	-32.0	-42.0	-41.8	-42.3	-48.2	PFUdA	41.2	42.8	32.8	35.0	24.5	22.6
PFPeS	-3.0	-5.6	-45.6	-41.4	1.2	0.3	PFDoA	0.4	0.5	-6.1	-3.5	-3.4	-5.3
PFHpA	-27.1	-24.1	-54.1	-52.8	-2.6	-4.5	PFTrDA	5.9	7.2	-17.2	-12.5	-36.4	-38.3
PFHxS	-19.7	-21.6	-25.6	-25.4	-21.2	-26.1	PFTeDA	8.2	9.1	42.1	45.2	-15.5	-20.9
PFHpS	33.8	31.3	33.3	39.6	-13.0	-14.3	PFHxDA	-28.6	-26.6	-24.6	-23.6	-20.2	-25.1
PFOA	6.4	-7.7	-8.7	-5.4	19.4	17.3	PFODA	3.9	5.4	-11.4	-9.0	-26.9	-24.6
PFOS	46.3	38.7	18.7	21.3	4.1	2.2	PFDOS	20.8	22.2	27.2	28.7	39.2	32.3
PFNA	9.0	7.1	2.1	4.7	-2.3	-4.2							

表 3 21 种化合物的线性关系、仪器定量限、保留时间

Table 3 The linear relation, LOD, retention time of 21 compounds

	内标	线性范围/		线性方程		定量限/
化合物	物质	$(ng \cdot mL^{-1})$	鸡蛋	鸡肉	鸭肝	$(\mu g \cdot kg^{-1})$
PFBA	MPFBA	0.2~10.0	y = 0.517x + 0.178 (r = 0.999 1)	y = 0.448x + 0.114 ($r = 0.999$ 4)	y = 0.532x + 1.78 (r = 0.9921)	0.25
PFPeA	MPFHxA	0.2~10.0	y = 0.839x + 0.15 (r = 0.9957)	y = 1.48x - 0.076 (r = 0.999 4)	$y = 0.41x + 0.043 \ 1 (r = 0.992 \ 1)$	0.25
PFBS	MPFHxA	0.2~10.0	y = 0.175x - 0.002 62($r = 0.992$ 7)	y = 0.221x - 0.001 33($r = 0.998$ 3)	y = 0.155x + 0.0084 (r = 0.9984)	0.25
PFHxA	MPFHxA	0.2~10.0	y = 0.57x - 0.003 05 ($r = 0.991$ 8)	y = 0.479x + 0.022 8 ($r = 0.998$ 7)	y = 0.428x + 0.0194(r = 0.9993)	0.25
PFPeS	_	0.2~10.0	y = 5.85e + 004x - 1.76e + 003(r = 0.999 4)	y = 3.28e + 004x + 1.37e + 003($r = 0.992$ 7)	y = 6.05e + 0.04x + 1.01e + 0.004(r = 0.9997)	0.25
PFHpA	MPFH _x S	0.2~10.0	y = 0.352x - 0.014 9 ($r = 0.998$ 6)	y = 0.217x + 0.018 8 (r = 0.994 1)	y = 0.367x + 0.0725(r = 0.9909)	0.25
PFHxS	MPFH _x S	0.2~10.0	y = 0.163x - 0.002 7 ($r = 0.996$ 8)	$y = 0.151x + 0.002 \ 27(r = 0.998 \ 7)$	y = 0.15x + 0.021 1 ($r = 0.989$ 6)	0.25
PFHpS	_	0.2~10.0	y = 7.95e + 004x + 6.88e + 003($r = 0.993$ 1)	y = 7.92e + 004x + 1.78e + 003($r = 0.998$ 3)	y = 5.09e + 004x + 7.31e + 003(r = 0.998 1)	0.25
PFOA	MPFOA	0.2~10.0	y = 0.529x + 0.17 ($r = 0.992$ 8)	y = 0.454x + 0.131 (r = 0.998 6)	y = 0.583x + 0.197 (r = 0.997 0)	0.25
PFOS	MPFOS	0.2~10.0	y = 0.196x + 0.007 35($r = 0.993$ 4)	y = 0.159x - 0.007 37($r = 0.995$ 5)	y = 0.137x + 0.0112 (r = 0.9990)	0.25
PFNA	MPFNA	0.2~10.0	y = 0.522x + 0.014 8 ($r = 0.998$ 8)	y = 0.489x + 0.011 3 ($r = 0.999$ 7)	y = 0.459x + 0.063 6($r = 0.996$ 3)	0.25
PFNS	MPFNA	0.2~10.0	$y = 0.057 \ 7x - 0.002 \ 66$ ($r = 0.997 \ 7$)	$y = 0.034 \ 1x + 0.009 \ 79$ ($r = 0.983 \ 8$)	y = 0.095 4x + 0.005 21 $(r = 0.999 4)$	0.25
PFDA	MPFDA	0.2~10.0	y = 0.504x + 0.025 1 ($r = 0.996$ 0)	y = 0.501x - 0.001 85(r = 0.999 3)	y = 0.474x - 0.004 21($r = 0.999$ 4)	0.25
PFDS	MPFDoA	0.2~10.0	$y = 0.089 \ 9x + 0.010 \ 7(r = 0.997 \ 1)$	y = 0.087x + 0.00846(r = 0.9954)	y = 0.115x + 0.024 1($r = 0.998$ 3)	0.25
PFUdA	MPFUdA	0.2~10.0	y = 0.456x - 0.0235(r = 0.9982)	y = 0.429x + 0.0059 (r = 0.9991)	$y = 0.396x - 0.009\ 06(r = 0.996\ 4)$	0.25
PFDoA	MPFDoA	0.2~10.0	y = 0.458x + 0.00376(r = 0.9984)	y = 0.428x + 0.00359(r = 0.9999)	y = 0.432x - 0.007 9 ($r = 0.999$ 9)	0.25
PFTrDA	_	0.2~10.0	y = 6.85e + 005x - 1.34e + 004(r = 0.9957)	y = 5.36e + 005x + 1.72e + 004(r = 0.9987)	y = 3.99e + 005x + 6.05e + 003(r = 0.998 6)	0.25
PFTeDA	MPFDoA	0.2~10.0	y = 0.409x + 0.035 7 ($r = 0.997$ 6)	y = 0.537x + 0.032 6 ($r = 0.997$ 1)	y = 0.299x - 0.010 2($r = 0.997$ 8)	0.25
PFHxDA	MPFDoA	0.2~10.0	$y = 0.142x + 0.008 \ 11(r = 0.999 \ 6)$	y = 0.15x + 0.048 1 ($r = 0.999$ 5)	y = 0.149x - 0.018 6 ($r = 0.997$ 3)	0.25
PFODA	MPFDoA	0.2~10.0	y = 0.237x + 0.026 8 (r = 0.998 5)	y = 0.202x - 0.00245(r = 0.9991)	y = 0.172x - 0.00842(r = 0.9982)	0.25
PFDOS	_	0.2~10.0	y = 6.84e + 004x + 8.91e + 003(r = 0.995 8)	y = 7.2e + 004x + 4.55e + 003(r = 0.998 8)	y = 7.49e + 004x - 5.76e + 003(r = 0.999 2)	0.25

	-											
加泰士 加标量/		平均回收率/%			批内精密度(n=6)/%			批间精密度(n=3)/%				
化合物	$(\mu \mathbf{g} \cdot \mathbf{k} \mathbf{g}^{-1})$	鸡肉	鸡蛋	鸭肝	鸡肉	鸡蛋	鸭肝	鸡肉	鸡蛋	鸭肝		
PFBA	0.25	108	108	101	8.2	8.2	4.2	8.0	12.5	6.7		
	0.50	114	91	115	7.0	8.5	9.9	12.0	11.6	12.0		
	1.25	100	84	109	6.5	7.0	6.5	5.5	9.6	5.5		
PFPeA	0.25	89	95	114	10.4	6.2	5.2	8.0	8.5	7.1		
	0.50	79	100	105	11.8	7.5	11.2	9.8	9.8	9.8		
	1.25	81	109	106	10.4	11.3	12.0	13.1	10.7	13.0		
PFBS	0.25	117	115	102	9.1	10.6	9.1	6.6	7.3	5.6		
	0.50	102	103	112	10.1	13.9	14.9	8.2	7.9	7.2		
	1.25	112	104	111	11.0	11.2	11.0	7.5	8.5	6.5		
PFHxA	0.25	116	102	108	6.5	9.5	7.5	5.1	7.1	6.1		
	0.50	99	100	115	7.9	10.5	5.7	11.4	11.2	12.0		
	1.25	85	90	115	7.5	9.1	7.1	8.4	8.2	8.0		
PFPeS	0.25	104	110	114	6.2	6.2	4.2	7.8	5.8	4.8		
	0.50	105	111	104	7.9	5.2	13.3	11.6	6.3	12.0		
	1.25	100	86	78	9.5	6.1	9.1	5.4	5.2	6.4		
PFHpA	0.25	102	83	110	10.2	8.2	7.2	10.5	7.5	5.5		
	0.50	100	92	110	7.4	5.3	8.2	6.7	9.7	5.7		
	1.25	81	116	99	13.1	7.6	12.0	9.9	6.9	8.9		
PFH _x S	0.25	105	109	108	14.5	12.2	3.5	13.8	10.8	3.8		
	0.50	113	106	75	13.7	14.9	8.1	13.4	11.4	8.4		
	1.25	92	88	109	15.1	11.0	10.3	9.6	9.6	9.4		
PFHpS	0.25	109	112	105	6.4	10.4	4.4	8.1	8.1	5.1		
	0.50	112	112	88	11.3	12.9	8.8	13.1	13.0	13.0		
	1.25	98	103	74	12.7	9.6	12.0	9.5	8.5	8.5		
PFOA	0.25	87	94	112	8.2	3.2	6.2	4.2	2.2	6.2		
	0.50	107	100	112	4.9	2.6	6.5	4.8	3.6	8.0		
	1.25	98	110	106	4.1	4.5	4.5	4.9	4.3	4.3		
PFOS	0.25	94	113	109	7.2	4.1	8.1	6.0	5.3	6.3		
	0.50	115	89	94	18.3	4.5	11.9	10.2	3.7	10.7		
	1.25	97	101	107	12.3	5.0	12.0	9.7	5.7	8.7		
PFNA	0.25	110	106	106	4.3	6.0	9.6	5.2	5.2	10.3		
	0.50	106	115	106	3.9	6.6	7.1	4.3	5.0	9.2		
	1.25	106	113	109	6.5	7.3	6.9	5.6	5.6	8.3		
PFNS	0.25	115	111	111	7.5	8.5	9.6	5.0	6.3	7.9		
	0.50	118	116	98	6.9	7.3	11.9	6.2	6.1	13.5		
	1.25	108	103	116	4.6	8.0	10.6	4.0	7.2	11.5		

表 4 21 种化合物在鸡肉、鸡蛋、鸭肝基质中的平均加标回收率、精密度

Table 4 The average recoveries and RSD of 21 compounds in chicken, chicken egg, duck liver matrix

4
4

化乙酮	加标量/	平均回收率/%			批内精密度(n=6)/%			批间精密度(n=3)/%		
化合物	$(\mu \mathbf{g} \cdot \mathbf{k} \mathbf{g}^{-1})$	鸡肉	鸡蛋	鸭肝	鸡肉	鸡蛋	鸭肝	鸡肉	鸡蛋	鸭肝
PFDA	0.25	94	101	101	5.2	6.3	8.6	7.5	5.2	11.0
	0.50	112	90	102	8.3	7.6	9.9	6.5	6.5	8.9
	1.25	94	111	113	7.5	8.1	10.2	5.2	6.4	10.2
PFDS	0.25	118	104	114	7.0	10.9	12.3	8.2	7.1	11.0
	0.50	106	107	107	8.4	11.0	14.8	10.2	8.2	12.0
	1.25	118	106	116	8.9	9.5	10.6	9.6	8.5	9.5
PFUdA	0.25	93	100	105	6.3	7.5	9.5	7.5	5.5	8.9
	0.50	111	99	112	3.4	6.5	10.7	7.0	6.4	9.3
	1.25	105	98	105	5.6	6.9	8.6	5.0	5.4	7.8
PFDoA	0.25	102	110	113	5.1	5.6	10.5	7.6	4.5	12.6
	0.50	95	91	95	4.3	5.3	15.2	5.5	5.1	10.6
	1.25	106	94	93	7.5	6.1	11.5	8.4	4.8	9.8
PFTrDA	0.25	92	94	76	4.5	7.8	6.5	6.8	5.8	8.5
	0.50	113	110	110	4.9	6.6	5.2	3.5	5.4	5.8
	1.25	80	77	108	5.1	7.0	5.9	3.3	6.3	6.8
PFTeDA	0.25	109	111	74	9.3	8.4	11.2	5.3	6.5	9.4
	0.50	90	84	114	7.6	6.4	13.6	7.2	4.3	10.2
	1.25	87	88	92	8.2	10.2	9.7	6.8	5.3	8.6
PFHxDA	0.25	118	114	111	10.2	9.3	12.0	8.6	7.4	11.5
	0.50	92	83	113	13.6	10.5	14.7	9.0	5.6	13.5
	1.25	98	98	76	9.3	6.2	9.6	5.6	7.2	10.6
PFODA	0.25	91	100	100	8.9	7.5	10.3	7.5	4.6	8.6
	0.50	111	71	104	10.9	6.4	15.0	9.3	5.2	12.6
	1.25	116	74	83	8.2	6.3	10.5	7.2	5.3	7.8
PFDOS	0.25	100	112	102	6.5	8.6	8.5	7.2	6.2	7.4
	0.50	114	116	108	7.9	8.3	9.5	6.6	7.5	8.3
	1.25	80	110	104	10.2	9.8	8.9	10.5	8.6	6.8

知,21 种化合物在鸡肉中平均回收率为 79%~118%,批 内精密度为 3.4%~18.3%,批间精密度为 3.3%~ 13.8%;在鸡蛋中平均回收率为 71%~116%,批内精密 度为 2.6%~14.9%,批间精密度为 2.2%~13.0%;在鸭 肝中平均回收率为 74%~116%,批内精密度为 3.5%~ 15.2%,批间精密度为 3.8%~13.5%;该方法灵敏度较 好,准确度以及精密度较高,根据实验室质量控制规范的 要求^[24],当被测组分含量<0.1 mg/kg,其回收率参考范 围为 60%~120%,当被测组分含量<0.01 mg/kg,精密 度应<21%,该方法符合该标准要求。

2.6 **实际样品检测**

运用研究建立的方法对重庆市某禽类养殖户散养的 禽类及其副产品 10 个(包含 6 种基质)进行全氟化合物 的测定。结果显示,6 种基质均检出 PFOA,含量为 0.547~0.825 µg/kg,仅在1份鸡肉样品中检出 PFBA,含 量为 0.657 µg/kg;图 4 为阳性样品离子流图。

与 S/N 3544—2013 相比,研究建立的方法具有操作 简单、检测化合物种类多且基质覆盖范围广的优势。分 别将一份 PFOA 阳性鸡蛋样品和一份 PFBA 阳性鸡肉样 品用 S/N 3544—2013 方法进行检测,得到的结果为 PFOA 含量 $0.552 \ \mu g/kg$,PFBA 含量 $0.664 \ \mu g/kg$,由表 5 可知,经研究建立方法和 S/N 3544—2013 方法两种方法 检测得到的 PFOA 和 PFBA 含量的标准偏差分别为 0.64%,0.75%,进一步说明研究建立的方法准确度高,稳 定性好。

3 结论

通过对提取溶剂、净化剂比例、色谱—质谱条件的优 化,并进行方法学验证,建立了超高效液相色谱—串联质 谱法同时检测鸡肉、鸡蛋、鸡肝、鸭肉、鸭蛋、鸭肝 6 种基 质中 21 种全氟类化合物,样品经优化的 QuEChERS 方法

图 5 阳性样品的总离子流图

Figure 5 The TIC chromatogram of positive samples

表 5 不同检测方法下 PFOA 和 PFBA 含量对比

Table 5	Comparison of PFOA and PFBA	contents by
	different detection methods	$\mu { m g/kg}$

检测方法	PFOA 含量	PFBA 含量
研究建立的方法	0.547	0.657
S/N 3544—2013	0.552	0.664

去除样品中的油脂、色素等非目标化合物,免去了传统固 相萃取柱复杂的净化步骤。该方法灵敏度高、选择性好、 前处理方法简单,线性关系、回收率等方法学指标较好, 分析时间短,能为全氟化合物风险评估提供重要的技术 支持。

参考文献

- [1] HUERTA B, MCHUGH B, REGAN F. Development and application of an LC-MS method to the determination of poly- and perfluoroalkyl substances (PFASs) in drinking, sea and surface water samples[J]. Anal Methods, 2022, 14(21): 2 090-2 099.
- [2] 宋彦敏, 周连宁, 郝文龙, 等. 全氟化合物的污染现状及国内外研究进展[J]. 环境工程, 2017, 35(10): 82-86.
 SONG Y M, ZHOU L N, HAO W L, et al. Pollution status and related research progress of perfluorinated compounds [J]. Environmental Engineering, 2017, 35(10): 82-86.
- [3] 陈雷,戴玙芽,陈晓婷,等. 全氟及多氟化合物在土壤中的污染 现状及环境行为研究进展[J]. 农业环境科学学报, 2021, 40(8): 1 611-1 622.

CHEN L, DAI Y Y, CHEN X T, et al. Research progress on the

pollution status and environmental behavior of per-and polyfluoroalkyl substances in soil[J]. Journal of Agro-Environment Science, 2021, 40(8): 1 611-1 622.

[4] 郑宇. 典型城市大气中全氟化合物的污染特征[D]. 青岛: 青岛 大学, 2020: 2-3.

ZHENG Y. Contaminant characteristics of perfluorinated compounds in atmospheric of typical cities[D]. Qingdao: Qingdao University, 2020: 2-3.

[5] 孙玉珠,李建宇,武梦茹,等.动物性食品中全氟烷基物质的残 留现状[J].中兽医医药杂志,2019,38(5):29-33.

SUN Y Z, LI J Y, WU M R, et al. Residue status of perfluoroalkyl substances in animal foods [J]. Journal of Traditional Chinese Veterinary Medicine, 2019, 38(5): 29-33.

- [6] 高灵飞, 王惟儒, 刘文欣, 等. 全氟/多氟烷基化合物在水环境中 污染现状[J]. 环境科学与技术, 2020, 43(7): 160-168.
 GAO L F, WANG W R, LIU W X, et al. Pollution status of per-and polyfluoroalkyl substances in water environment[J]. Environmental Science & Technology, 2020, 43(7): 160-168.
- [7] 杜国勇, 蒋小萍, 卓丽, 等. 长江流域重庆段水体中全氟化合物 的污染特征及风险评价[J]. 生态环境学报, 2019, 28(11): 2 266-2 272.
 - DU G Y, JIANG X P, ZHUO L, et al. Distribution characteristics and risk assessment of perfluorinated compounds in surface water from Chongqing Section of the yangtze river [J]. Ecology and Environmental Sciences, 2019, 28(11): 2 266-2 272.
- [8] 刘嘉烈,石运刚,唐娜,等.重庆长江流域鲫鱼和沉积物中17种 全氟化合物污染特征[J].环境化学,2020,39(12):3 450-3 461.
 LIUJL,SHIYG,TANGN, et al. Pollution characteristics of

seventeen per- and polyfluoroalkyl substances in fish and sediments of yangtze river basin in Chongqing city [J]. Environmental Chemistry, 2020, 39(12): 3 450-3 461.

- [9] WANG X L, ZHANG Q C, ZHAO Z Y, et al. A multi-plug filtration (m-PFC) cleanup method based on carboxylic multi-walled carbon nanotubes for the detection of 14 perfluorinated compounds and dietary risk assessment of chicken, beef, and mutton collected from Shanghai markets[J]. Food Control, 2021, 130: 1-10.
- [10] QI X, ZHOU J, WANG M, et al. Perfluorinated compounds in poultry products from the yangtze river delta and pearl river delta regions in China[J]. Science of the Total Environment, 2019, 689: 1 079-1 086.
- [11] LI P Y, OYANG X H, ZHAO Y L, et al. Occurrence of perfluorinated compounds in agricultural environment, vegetables, and fruits in regions influenced by a fluorine-chemical industrial park in China[J]. Chemosphere, 2019, 225: 659-667.
- [12] CHUNG S M, HEO D G, KIM J H, et al. Perfluorinated compounds in adults and their association with fasting glucose and incident diabetes: A prospective cohort study [J]. Environmental Health, 2022, 21(1): 101.
- [13] 张露露, 刘婧, 贺颖倩, 等. 血清全氟化合物与代谢相关脂肪 性肝病患病风险的关系 [J]. 中国环境科学, 2023, 43 (2): 964-972.
 ZHANG L L, LIU Q, HE Y Q, et al. The relationship of serum perfluoroalkyl substances with the risk of metabolic associated

fatty liver disease[J]. China Environmental Science, 2023, 43(2): 964-972.

- [14] 郭聪慧,范玉珊,乔延召,等. 全氟类化合物对雌性哺乳动物的生殖毒性[J]. 动物医学进展, 2020, 41(12): 120-123.
 GUO C H, FAN Y S, QIAO Y Z, et al. Reproductive toxicity of perfluorinated compounds in female mammals [J]. Progress in Veterinary Medicine, 2020, 41(12): 120-123.
- [15] KNUTSEN H K, ALEXANDER J, BARREGÅRD L, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food[J]. EFSA Journal, 2018, 16 (12): e05194.
- [16] SCHRENK D, BIGNAMI M, BODIN L, et al. Risk to human health related to the presence of perfluoroalkyl substances in food [J]. EFSA Journal, 2020, 18(9): e06223.
- [17] 张文, 闫君, 陈婷, 等. UPLC-MS/MS 法测定食用植物油中 15种全氟化合物[J]. 化学试剂, 2022, 44(3): 455-461.
 ZHANG W, YAN J, CHEN T, et al. Determination of 15 perfluorinated compounds in edible vegetable oil by UPLC-MS/ MS[J]. Chemical Reagents, 2022, 44(3): 455-461.
- [18] 张文, 陈婷, 闫君, 等. 改进的 QuEChERS-UPLC-MS/MS 法测定 茶叶中 15 种全氟化合物[J]. 分析试验室, 2021, 40(11): 1 314-1 319.

ZHANG W, CHEN T, YAN J, et al. A modified QuEChERS-UPLC-MS/MS method for the determination of 15 perfluorinated compounds in tea[J]. Chinese Journal of Analysis Laboratory, 2021, 40(11): 1 314-1 319.

[19] 孙小航,朱丽,宁凡盛,等. 食用农产品中全氟化合物检测技术的研究进展[J]. 食品研究与开发, 2019, 40(7): 213-217.
SUN X H, ZHU L, NING F S, et al. Progress on detection technology of perfluorinated compounds in edible agricultural products[J]. Food Research and Development, 2019, 40(7): 213-217.

[20] 李静, 张鸿, 柴之芳, 等. 分散固相萃取结合 HPLC-MS/MS 检测鸡蛋中 16 种全氟化合物[J]. 分析测试学报, 2014, 33(10):
1 109-1 115.

LI J, ZHANG H, CHAI Z F, et al. Determination of sixteen perfluorinated compounds in egg by high performance liquid chromatography- tandem mass spectrometry combined with dispersive solid phase extraction [J]. Journal of Instrumental Analysis, 2014, 33(10): 1 109-1 115.

[21] 王莹, 杜思宇, 张红, 等. 改进的 QuEChERS-UPLC-MS/MS 法测 定动物源性食品中 13 种全氟化合物[J]. 食品工业科技, 2021, 42(1): 239-249.

WANG Y, DU S Y, ZHANG H, et al. Determination of thirteen PFCs in animal-derived food by improved QuEChERS extraction coupled with ultra-high performance liquid chromatographytandem mass spectrometry [J]. Science and Technology of Food Industry, 2021, 42(1): 239-249.

- [22] 李帅, 陈辉, 金铃和, 等. 高效液相色谱—串联质谱法测定蜂 蜜中 20 种全氟烷基化合物[J]. 色谱, 2017, 35(5): 495-501.
 LI S, CHEN H, JIN L H, et al. Determination of 20 perfluorinated alkyl substances in honey by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2017, 35(5): 495-501.
- [23] 薛荣旋, 卢丽明, 黄诚, 等. QuEChERS-超高效液相色谱—串联 质谱法测定水产品中 6 种氟喹诺酮类抗生素残留量[J]. 中国 食品卫生杂志, 2020, 32(5): 519-523.

XUE R X, LU L M, HUANG C, et al. Determination of six fluoroquinolones in aquatic products by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Food Hygiene, 2020, 32(5): 519-523.

[24] 国家质量监督检验检疫总局.实验室质量控制规范 食品理 化检测: GB/T 27404—2008[S/OL]. (2008-05-04) [2022-12-09]. http://down.foodmate.net/standard/yulan.php? itemid= 15544.
General Adminitration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Criterion on quality control of laboratoria—Chemical testing of food: GB/T 27404— 2008[S/OL]. (2008-05-04) [2022-12-09]. http://down.foodmate.net/ standard/yulan.php? itemid= 15544.