基于改进 Faster R-CNN 模型的樱桃缺陷检测 Detection of cherry defects based on improved Faster R-CNN model

魏	冉 ^{1,2}	裴悦琨1,2	姜艳超1,2	周品志1,2	张永飞1,2					
WEI	$Ran^{1,2}$	PEI Yue-kun ^{1,2}	JIANG Yan-chao ^{1,2}	ZHOU Pin-zhi ^{1,2}	ZHANG Yong-fei ^{1,2}					
	(1. 大连大学辽宁省北斗高精度位置服务技术工程实验室,辽宁 大连 116622;									
	2. 大连大学大连市环境感知与智能控制重点实验室,辽宁 大连 116622)									
(1. Beidou High Precision Positioning Service Technology Engineering Laboratory of Liaoning										
D	. г			· · · · · · · · · · · · · · · · · · ·	· 1 T . 11 [·] .					

Province, Dalian, Liaoning 116622, China; 2. Dalian University Environment Sensing and Intelligent Control Key Laboratory of Dalian, Dalian University, Dalian, Liaoning 116622, China)

摘要:目的:提高工业环境下樱桃分级分拣工作的效率。 方法:提出了基于 Faster R-CNN 框架改进的樱桃缺陷识 别分拣模型。结果:通过对比 VGG16、MobileNet-V2 和 ResNet50 网络,主干网络为 ResNet50 的效果最优,改进 后的 Faster R-CNN 模型对樱桃裂口、双生、刺激生长、霉 变、褐变 腐烂和完好果的检测精度分别为 97.75%, 99.77%,98.90%,97.56%,96.67%,98.80%,平均检测精 度达 98.24%,高于其他模型,检测速度为 31.16 帧/s。结 论:试验方法对樱桃缺陷类别的检测具有较高的识别 精度。

关键词:樱桃;缺陷;Faster R-CNN;特征金字塔;注意力 机制

Abstract: Objective: To improve the efficiency of cherry classification and sorting in industrial environment. Methods: An improved cherry defect recognition and sorting model based on Faster R-CNN framework was proposed. Results: By comparing VGG16, MobileNet-V2 and ResNet50 network, the effect of Resnet50 network was the best, the improved Faster R-CNN model had 97.75%, 99.77%, 98.90%, 97.56%, 96.67%, 98.80% of detection precision for cherry fissure, twinning, growth stimulation, mildew, Browning rotten and intact fruit, respectively. The average detection accuracy of the improved Faster R-CNN model was 98.24%, which was higher than other models, and the detection speed was 31.16 frames/s. Conclusion: The test method had a high identification accuracy for cherry defects.

收稿日期:2021-04-16

Keywords: cherry; defects; Faster R-CNN; feature pyramid; attentional mechanism

中国樱桃种植面积已居世界首位。但由于水果产后 处理技术不完善,导致新鲜的樱桃不能及时进行分级分 拣,影响出口销售^[1]。

表面缺陷是果品分级分拣的重要影响因子^[2]。传统 的果品缺陷检测技术通常是在果品采收后依靠人工分 类,效率低、工作量大。目前,机器视觉中用于缺陷识别 的方法可分为光谱成像、机器学习、图像处理和深度学习 四大类。Siedliska等^[3]采用 VNIR 高光谱成像实现了樱 桃核的无损检测,精度达96%,但该技术存在特征波段的 选择和准确性不稳定等缺点。Zawbaa等^[4]将经尺度不 变特征变换(SIFT)提取的算子输入随机森林(RF)识别 苹果,精度达96.97%,这种将图像处理提取的特征结合 机器学习分类器(如 Adaboost^[5]、SVM^[6]、DPM^[7]等)进 行分类的算法,受环境影响较大,且设计的表征模型具有 针对性。裴悦琨等^[8]基于卷积神经网络设计的樱桃缺陷 识别方法精度达到97.99%,但并不能定位到果品的 位置。

基于以上检测技术的缺点,国内外学者逐渐将果品 识别的研究热点转向了基于深度学习的目标检测算法, 更加关注图像的局部区域和特定的物体类别,并应用于 多个领域^[9-12]。Bargot等^[13]使用 Faster R-CNN 检测果 园中的水果;Villacrés等^[14]采用 Faster R-CNN 检测真实 果园中的樱桃数量;Vasconez等^[15]使用 Faster R-CNN 实现了不同田间条件下的水果追踪和计数工作;但该算 法在樱桃缺陷识别中的研究尚未见报道。文章拟基于 Faster R-CNN 对樱桃缺陷特征进行检测,针对小目标易 误检、漏检的问题,对原始网络算法进行改进。采用表征 能力较强的 ResNet50^[16]作为特征网络,代替原始的

基金项目:国家自然科学基金项目(编号:61601076);大连市高层 次人才创新计划(编号:2019RQ070)

作者简介:魏冉,女,大连大学在读硕士研究生。

通信作者:裴悦琨(1985—),男,大连大学副教授,硕士生导师,博 士。E-mail: peiyuekun@dlu.edu.cn

VGG16 主干网络;不同于传统的单特征图预测,采用特 征金字塔 FPN^[17]融合深浅层次网络,实现多尺度预测, 并结合迁移学习初始模型权重;提出结合注意力机制 SENet、SKNet,用于加强关键特征信息的学习,增强模型 鲁棒性,建立樱桃缺陷检测模型,方便自动化处理程序根 据返回的定位信息完成樱桃的分配操作,为后期实现自 动化缺陷检测提供一定的理论基础与技术支持。

1 樱桃数据集的构建

数据采集于辽宁省大连市金州区果园的樱桃,基于 实验室分拣原型设备构建用于樱桃缺陷检测的数据集, 主要包括数据采集及增强、数据分类及标注。

1.1 数据采集及增强

樱桃数据品种为美早,将采集到的果体置于模拟分拣 环境下获取样本。每次采集前在滚轮间放置多个不同类 别的樱桃,转动齿轮使样本数据尽量多地涵盖果体各个面 的特征,通常一张样本图中包含 1~10 个樱桃。图像像素 为 2 046×1 080,格式为 JPG。为降低过拟合造成的试验 误差,采用旋转、随机裁剪、翻转、平移,调整亮度、色度、饱 和度、对比度和锐度等数据增强技术扩充样本数据集。

1.2 数据分类及标注

共获取 10 000 张樱桃样本集,根据其生长缺陷分为 裂口、双生、刺激生长、霉变、褐变腐烂和完好 6 种类别 (见图 1)。优等果果体完好,可投入水果贸易市场;裂口、 双生和刺激生长类型的次等果依然可以继续销售,价格 低于优等果;霉变和褐变腐烂果应及时剔除,避免流入 市场。

选择 LabelImg 工具对图像进行标注,并将标注信息 以 PASCAL VOC 的格式保存为 XML 文件。随机选择 样本的 80%作为训练集,20%作为测试集,如图 2 所示。

2 研究方法及模型

Faster R-CNN^[18]是深度学习目标检测中典型的两阶段检测模型,主要包括特征网络、RPN网络、Roi Pooling层、分类和回归网络。模型先通过特征网络获得

特征图,利用 RPN 生成精细的候选框,与特征图映射后 得到局部特征层,传入 Roi Pooling 完成池化后,输入分类 和回归网络,最终得到目标的类别和位置信息。基于 Faster R-CNN 的樱桃缺陷检测过程如图 3 所示。

2.1 特征提取网络

基于 ResNet50 的残差模块包含 Identity Block 和 Conv Block 两种结构(见图 4)。Identity Block 模块的输 入和输出向量的维度相同,可直接通过串联加深网络,学 习深层次的语义信息。Conv Block 模块的输入和输出向 量的维度不同,需执行 1×1 的卷积来匹配维度。

文章主要研究 ResNet50 作为特征网络在樱桃缺 陷检测中的表现效果,替代了原始框架中的VGG16,

图 3 基于 Faster R-CNN 的樱桃缺陷检测过程 Figure 3 Faster R-CNN based cherry defect detections process

2.2 RPN

RPN 主要采用端到端的训练方式生成区域候选框, 代替了原始的滑动窗口法和 SS 算法,极大地提高了检测 框的生成速度。

RPN 网络训练时产生的损失函数由分类损失 L_{cls}和回归损失 L_{reg}两部分组成。模型的训练损失函数为:

$$L(\{p_i\},\{t_i\}) = \frac{1}{N_{cls}}\sum_i L_{cls}(p_i,p_i^*) +$$

$$\lambda \frac{1}{N_{\text{reg}}} \sum_{i} p_{i}^{*} L_{\text{reg}}(t_{i}, t_{i}^{*}) , \qquad (1)$$

$$L_{\rm cls}(p_i, p_i^*) = -\log[p_i p_i^* + (1 - p_i)(1 - p_i^*)],$$
(2)

$$L_{\rm reg}(t_i, t_i^*) = \sum_i {\rm smooth}_{L_1}(t_i - t_i^*) , \qquad (3)$$

$$t_i = (t_x, t_y, t_w, t_h) , \qquad (4)$$

- *i*——依次遍历 RPN 网络生成的第*i* 个边界框;
- p_i —— 第 *i* 个 anchor 预测为真实标签的概率;
- p_i^* ——对应目标的标签;

 N_{cls} ——一个 batch 中 anchor 的数目; N_{reg} ——anchor 位置的个数; λ ——两部分损失的调和因子; t_i ——第 i 个边界框的预测参数; t_i^* ——第 i 个边界框的标注参数; smooth_{L1} ——平滑函数。

2.3 网络的改进方法

选用 Faster R-CNN 作为樱桃缺陷检测的模型,针对 果体的缺陷特征,对该框架进行改进,以提高模型检测 精度。

2.3.1 特征金字塔 FPN 主干网络前向传播得到的最后 一层共享特征图,语义信息丰富,但图像分辨率降低,丢 失了大量的细节信息,易造成小目标难检问题;而浅层特 征图分辨率较高,具备大量的细节信息,目标定位较精 准。因此,尺度差异一直是目标检测领域的研究热点^[19]。 文章采取一种将局部和全局信息相结合的方法,构建特 征金字塔 FPN,实现多尺度特征图的融合和预测,在无明 显计算负担的情况下增强特征的表达能力,以提高对小 目标的检测精度。

通过 FPN 得到的多特征映射,利用自顶向下和横向 连接,将上层的特征图经上采样后与下一层特征图进行 融合^[20],对不同深度的目标实行多尺度预测,最终得到的

图 4 Identity Block 和 Conv Block 残差结构

Figure 5 ResNet50 structure diagram

新特征向量被送入全连接层执行分类和回归任务。融合 后的特征向量同时具备了深层次的高语义信息和浅层次 的细节信息,能改善对小目标的检测效果,其网络结构如图6所示。

2.3.2 注意力机制 SENet SENet^[21]是在特征图的通道 维度上增加注意力机制,在每个通道信号上增加一个权 重以表示其与关键信息的相关性,从而筛选出重要信息, 使模型加强关键特征,抑制无用特征。

如图 7(a)所示,在 ResNet 中嵌入 SE 模块,对分支上的残差模块特征进行特征重标定。先对分支上的输入值执行全局池化操作 Squeeze(F_{sq}),如式(6)所示,将维度特征降至一维,然后利用 Excitation(F_{ex})操作预测每个通道的重要性,结合非线性激活 ReLU 拟合通道间的依赖关系,再利用 Sigmoid 归一化权重,最后执行 Scale(F_{scale})操作将权重值与原始特征通道加权,从而使神经网络重点关注权重大的通道,提高模型检测效率。

$$F_{\rm sq}(X_c) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} X_c(i,j) \quad . \tag{6}$$

2.3.3 注意力机制 SKNet SKNet^[22]是在卷积核上增加 注意力机制,同时考虑了通道和卷积的权重,针对不同图 像动态地生成不同尺寸的卷积核,使网络自主选择合适 的卷积核,获取不同感受野的信息,增强模型鲁棒性。

如图 7(b)所示,其操作过程主要包括:

(1) Split:为了提升精度,对输入的特征图 $X(C \times H \times W)$ 使用不同大小的卷积核执行 Convolutions + Batch Normalization+ReLU 运算, X 被分成两条(或多条)分支 $F_1: X \to U_1 \in \mathbb{R}^{H \times W \times C}$, $F_2: X \to U_2 \in \mathbb{R}^{H \times W \times C}$ 。

(2) Fuse:利用 Add 操作整合所有分支的信息: $U_c = U_1 + U_2$,特征图 U 融合了多个不同的感受野信息,然后利用全局平均池化操作嵌入全局信息,如式(7)所示。

$$s_{c} = F_{gp}(U_{c}) = \frac{1}{H \times W} \sum_{i=1}^{n} \sum_{j=1}^{w} U_{c}(i,j), s \in \mathbb{R}^{C},$$
(7)

式中:

s_c — *s* 的第*c* 个元素(代表每个通道的重要程度)。 对 1×1×*C* 的 *s* 向量用一个全连接层进行线性变 换,得到信息 $z(1 \times 1 \times Z)$,如式(8)所示,再对每个分支 使用线性变换,将 Z 维恢复到 C 维向量,以预测不同组卷 积的注意力因素。

$$z = F_{fc}(s) = \delta[BN(W_s)], \qquad (8)$$

式中:
 $z \in \mathbb{R}^{d \times 1};$
 $\delta \longrightarrow \text{ReLU} 函数;$
 $BN \longrightarrow \text{Hk标准}(L;)$
 $W \in \mathbb{R}^{d \times C};$
 $d \longrightarrow 2$ 连接后的特征维度, $d = \max\left(\frac{C}{r}, L\right);$
 $r \longrightarrow \text{E缩因};$
 $L \longrightarrow d$ 的最小值。

(3) Select: 对分支进行归一化, 先将通道分数与 U_1 、 U_2 相乘得到 A_1 、 A_2 , 再将分支融合得到向量V, V 相对于 U 融合了多个感受野信息。最终的特征映射V 如式(9) 和式(10)所示(其中 e 为自然数)。

$$V_i = a_i \times A_1 + b_i \times A_2, \qquad (9)$$

$$a_i = \frac{e^{Aiz}}{e^{Aiz} + e^{Biz}}, b_i = \frac{e^{Biz}}{e^{Aiz} + e^{Biz}},$$
 (10)

式中:

a、**b**——Select 的 2 个权重矩阵;

 a_i , b_i — a, b 的第i 个元素($a_i + b_i = 1$).

特征图循环经过残差注意力机制后执行 FPN 多尺 度预测,传入 RPN 与候选信息相映射,最后执行分类和 回归任务。由于 SKNet 采用不同的卷积核,可以自适应 地调整自身的感受野,因此比 SENet 更加细腻,具有更高 的精度。改进后的 Faster R-CNN 模型如图 8 所示。

3 试验与结果

3.1 试验配置

如图9所示,基于深度学习的樱桃缺陷检测系统硬

图 8 改进后的 Faster R-CNN 网络结构图 Figure 8 Improved Faster R-CNN network structure diagram

件由模拟流水线环境和电脑配置两部分组成。模拟流水 线环境配置用于获取樱桃数据集,电脑配置部分用于对 数据集进行处理。

(1) 工业化环境配置:照明系统、CMOS 摄像机
 (acA2000-50g型)、镜头[M1614-MP29(CH)3 型号]、
 POE 千兆网卡(LR5M 千兆网卡型号)和传送齿轮等。

(2)电脑配置:台式电脑,GeForceGTX3080显卡,单GPU10G显存;Inter(R)Core(TM)i9-10900K处理器,32G内存,频率DDR43000,基于PyCharm的Python编程语言,Windows-Sever 2019、64位操作系统,采用Pytorch深度学习框架。

3.2 模型训练

在数据集 Microsoft COCO 预训练权重的基础上,采

用迁移学习初始化权重参数,降低深度学习模型训练的 难度。基于 Faster R-CNN,模型所采用的特征网络为 ResNet50,输入图片的大小归一化为 300 像素×300 像 素,采用随机梯度法训练网络,动量设为 0.9,学习率初始 化为 0.005,权重衰减因子为 0.000 5,迭代次数为 100,每 训练 5 步以 0.33 倍速降低学习率值。训练时采用的 batchsize 大小为 8,IoU 值为 0.5。

3.3 模型评价指标

为衡量试验模型对解决樱桃缺陷识别的有效性,采 用深度学习领域常用的衡量指标平均 AP 值(mAP)、F₁ 值和每秒帧率(FPS)评价模型性能。

mAP是所有类别平均精度 AP 的平均值,取值区间 为[0,1],AP是由精确率P和召回率R绘制而成的曲线

1. 电脑
 2. 同步光源控制器
 3. 传送齿轮
 4. 相机
 5. 遮光罩
 6. 激光接近传感器
 7. 樱桃样本
 8. 光源

图 9 基于深度学习的樱桃缺陷检测系统

Figure 9 Cherry defect detection system based on deep learning

面积。 F_1 综合了 P 和 R 两个指标,其计算为:

$$P = \frac{T_P}{T_P + F_P} , \qquad (11)$$

$$R = \frac{T_P}{T_P + F_N} , \qquad (12)$$

$$AP = \int_0^1 PR \, \mathrm{d}R \, \, , \tag{13}$$

$$mAP = \frac{1}{N} \sum_{i=1}^{N} AP(i)$$
, (14)

$$F_1 = \frac{2PR}{P+R} , \qquad (15)$$

式中:

 $F_{\rm P}$ ——假正例;

AP(i) —— 第 i 类目标的 AP 值。

指标每秒帧率(FPS)用于评估模型对图片的处理速

度,即每秒钟识别的图片数目。

3.4 樱桃缺陷检测结果及分析

为了更全面理解试验方法对检测结果的影响,通过 对樱桃缺陷数据集采用多种策略进行实验验证。先探究 主干网络 ResNet50 对试验结果的影响。为避免试验其 他元素对结果的作用,在保证模型参数一致的前提下,对 比特征网络为 VGG16、MobileNet-V2 和 ResNet50 的3 种 检测模型,试验结果见表 1。

由表 1 可知,将原始的 VGG16 替换为 MobileNet V2 和 ResNet50 后,mAP 指标分别提升了 5.89%,11.85%, F_1 值分别提升了 4%,8%。网络 ResNet50 的 mAP、 F_1 值均高于其他网络,说明其残差结构在试验中具有优越 性和较强的表征能力。基于 ResNet50 的目标模型虽然 在双生、刺激生长、完好这 3 类较大尺度的目标上检测结 果较好,但对于裂口、霉变、褐变腐烂这种小目标的检测 精度有待提高,识别能力相对较弱。

在正常光线下,基于 ResNet50 的 Faster R-CNN 能 识别出特征明显的果体,但由于双生与刺激生长、霉变与 褐变腐烂两两之间的相似特征造成检测效果较弱,未被 正确识别,对裂口也易造成误检漏检,为了提高对小目标 的检测精度,同时缓解由于网络层数的增多而带来的目 标特征丢失现象,引入 FPN 进行多尺度预测,为加快训 练速度,采用迁移学习初始化试验模型权重。

由表 2 可知,对特征 网络采用基于特征融合的多尺 度预测后,模型对所有类别的检测均有正向促进作用,尤 其对霉变、褐变腐烂、裂口和刺激生长的改善效果明显, AP 值分别提高了 18.13%,9.49%,9.21%,9.06%,对于 完好和双生果的精度也分别提高了 0.69%,0.64%,模型 mAP值提升了7.86%,证明了融合多尺度特征层更能获

表 1 樱桃测试集上不同特征网络模型对比

Table 1 C	Comparison	of different	feature network	models in	cherry test set
-----------	------------	--------------	-----------------	-----------	-----------------

目标模型		AD 店 / 1/	下 店					
特征网络	裂口	双生	刺激生长	霉变	褐变腐烂	完好	— mAP 但/ 70	I I II.
VGG16	87.90	85.22	66.97	51.55	84.99	91.69	78.05	0.78
MobileNet-V2	91.28	94.62	74.34	61.65	87.85	93.92	83.94	0.82
ResNet50	89.08	97.46	89.19	78.30	87.21	98.12	89.90	0.86

表 2 樱桃测试集上不同改进策略对比

Table 2 Comparison of different improvement	ent strategies on the cherry test set	%
---	---------------------------------------	---

基础模型		AP 值							
Faster R-CNN	裂口	双生	刺激生长	霉变	褐变腐烂	完好	- mar li		
主干网络 ResNet50	89.08	97.46	89.19	78.30	87.21	98.12	89.90		
ResNet50+预训练	94.39	96.43	96.17	80.09	91.53	98.35	92.83		
FPN 多尺度预测	98.29	98.10	98.25	96.43	96.70	98.81	97.76		
融合 SENet	97.68	98.46	98.85	97.23	96.57	98.61	97.90		
融合 SKNet	97.75	99.77	98.90	97.56	96.67	98.80	98.24		

得较准确的物体信息,提高小目标检测精度。融合 FPN 后,试验模型对于小目标误检、漏检现象得到了明显改善,且对各种缺陷的检测精度均值达到 99%,说明结合 FPN的策略是有效的。

在上述改进策略后的基准网络上分别引入 SENet、

SKNet 模块,模型 mAP 值分别继续提升了 0.14%, 0.48%,且注意力机制模块参数少、计算快,改进前后并未 对模型带来明显的网络负担,证明了注意力机制在图像 检测任务中的有效性。不同改进策略模型的 Eval mAP 和改进前后模型损失分别见图 10 和图 11。

为了更好地证明试验方法的优越性,将改进的Faster R-CNN模型与其他基于深度学习的检测算法进行对比, 结果见表 3 和表 4。

由表 3 和表 4 可知,在各类物体的检测结果上,试验 改进后的模型优于其他典型的深度学习检测方法,相比 于 SSD、YOLO V3、YOLO V4 具有较高的检测性能, mAP 值分别提升了 5.53%,4.64%,4.02%,FPS 值为 31.16 帧/s。与文献[8]检测方法相比,试验缺陷果检测 精度稍高,检测速度为 311 个/s,远高于文献[8]。说明改 进后的模型算法表现出了实际应用的稳定性,检测耗时 在可接受的范围内,证明了试验方法的可行性。

4 结语

为实现樱桃智能识别分级分拣,建立了基于 Faster R-CNN 的樱桃缺陷检测模型,主要解决了小目标易误 检、漏检的问题。主干网络采用具有强特征提取能力的 ResNet50,结合多尺度特征融合与预测的方式,提高了对 小目标区域的表征提取,以此更匹配试验对象。采取主 干网络融合注意力机制的优化方式,引导模型关注方向, 提高了模型检测精度。采用改进策略后的 Faster R-CNN 模型对缺陷、完好果的识别精度分别为 98.13%,98.80%, 通过与其他方法的对比,验证了改进后的 Faster R-CNN 对于樱桃缺陷识别具有高精度和可靠的实时性优势,能

	rabie o	companioo	ii or anneren	actection	i aigoirtiinii	on enerry		
网纹横刑		m A D 估 / 0/	FPS/					
內增快至	裂口	双生	刺激生长	霉变	褐变腐烂	完好	— mAi 11/70	(帧•s ⁻¹)
SSD-VGG	94.77	90.05	92.36	89.98	90.08	99.03	92.71	72.80
YOLO V3	95.32	95.64	86.66	94.48	92.08	97.41	93.60	56.70
YOLO V4	96.76	97.19	84.60	95.65	92.25	98.84	94.22	43.23
试验方法	97.75	99.77	98.90	97.56	96.67	98.80	98.24	31.16

表 3 樱桃测试集上不同检测算法的对比

Table 3 Comparison of different detection algorithms on cherry test set

表 4 樱桃缺陷种类识别结果对比

Table 4 Comparison of identification of cherry defect species

之)+		准确率/%							FPS/	空位	
刀伝 =	裂口	双生	刺激	腐烂	完好	霉变	鼻尖裂口	缺陷	(帧•s ⁻¹)	$(\uparrow \cdot s^{-1})$	正世
文献[8]	95.60	97.98	96.72	99.64	99.25	/	95.60	97.99	/	25	×
试验方法	97.75	99.77	98.90	96.67	98.80	97.56	/	98.13	31.16	311	\checkmark

够满足流水线樱桃缺陷检测工程的精准识别,但模型参数庞大,增加了内存开销,检测速度有待提高,故后续拟研究轻量级深度网络模型,在保证高精度的同时增强实时性检测。

参考文献

 [1] 曹玉栋,祁伟彦,李娴,等.苹果无损检测和品质分级技术研究 进展及展望[J].智慧农业,2019(3):29-45.

CAO Yu-dong, QI Wei-yan, LI Xian, et al. Research progress and prospect on non-destructive detection and quality grading technology of apple[J]. Smart Agriculture, 2019(3): 29-45.

- [2] 徐赛, 陆华忠, 丘广俊, 等. 水果品质无损检测研究进展及应用现状[J]. 广东农业科学, 2020, 47(12): 229-236.
 XU Sai, LU Hua-zhong, QIU Guang-jun, et al. Research progress and application status of fruit quality nondestructive detection technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 229-236.
- [3] SIEDLISKA A, ZUBIK M, BARANOWSKI P, et al. Algorithms for detecting cherry pits on the basis of transmittance mode hyperspectral data[J]. International Agrophysics, 2017, 31(4): 539.
- [4] ZAWBAA H M, HAZMAN M, ABBASS M, et al. Automatic fruit classification using random forest algorithm[C]// 2014 14th International Conference on Hybrid Intelligent Systems. Kuwait: Institute of Electrical and Electronics Engineering, 2014: 164-168.
- [5] SUBASI A, DAMMAS D H, ALGHAMDI R D, et al. Sensor based human activity recognition using adaboost ensemble classifier [J]. Procedia Computer Science, 2018, 140: 104-111.
- [6] FARIS H, HASSONAH M A, ALA'M A Z, et al. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture[J]. Neural Computing and Applications, 2018, 30(8): 2 355-2 369.
- [7] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(9): 1 627-1 645.

[8] 裴悦琨, 连明月, 姜艳超, 等. 基于机器视觉的樱桃缺陷检测与 识别[J]. 食品与机械, 2019, 35(12): 137-140, 226.

PEI Yue-kun, LIAN Ming-yue, JIANG Yan-chao, et al. Cherry defect detection and recognition based on machine vision[J]. Food & Machinery, 2019, 35(12): 137-140, 226.

- [9] WANG Lin, ZHANG He-he. Application of faster R-CNN model in vehicle detection [J]. Journal of Computer Applications, 2018, 38 (3): 666-670.
- [10] WAN Shao-hua, GOUDOS S. Faster R-CNN for multi-class fruit detection using a robotic vision system [J]. Computer Networks, 2020, 168: 107036.
- [11] FU Long-sheng, MAJEED Y, ZHANG Xin, et al. Faster R-CNNbased apple detection in dense-foliage fruiting-wall trees using RGB and depth features for robotic harvesting[J]. Biosystems Engineering, 2020, 197: 245-256.
- [12] DAI Xiao-biao, HU Jun-ping, ZHANG Hong-mei, et al. Multi-task Faster R-CNN for nighttime pedestrian detection and distance estimation[J]. Infrared Physics & Technology, 2021, 115: 103694.
- [13] BARGOTI S, UNDERWOOD J. Deep fruit detection in orchards[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Singapore: Institute of Electrical and Electronics Engineering, 2017: 3 626-3 633.
- [14] VILLACRÉS J F, AUAT CHEEIN F. Detection and characterization of cherries: A deep learning usability case study in chile[J]. Agronomy, 2020, 10(6): 835.
- [15] VASCONEZ J P, DELPIANO J, VOUGIOUKAS S, et al. Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation[J]. Computers and Electronics in Agriculture, 2020, 173: 105348.
- [16] HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Las Vegas, NV, USA: Institute of Electrical and Electronics Engineering, 2016: 770-778.

(下转第201页)

- [65] GIMÉNEZ B, GÓMEZ-GUILLÉN M C, PÉREZ-MATEOS M, et al. Evaluation of lipid oxidation in horse mackerel patties covered with borage-containing film during frozen storage[J]. Food Chemistry, 2011, 124(4): 1 393-1 403.
- [66] CHOI Yun-sang, KU Su-yung, JEONG Ji-yu, et al. Changes in ultrastructure and sensory characteristics on electro-magnetic and air blast freezing of beef during frozen storage[J]. Korean Journal for Food Science of Animal Resources, 2015, 35(1): 27-34.
- [67] 索原杰, 宣晓婷, 崔燕, 等. 超声波辅助冻结在水产品及肉类 产品中的应用研究进展及解冻机制[J]. 生物加工过程, 2018, 16(3): 78-83.

SUO Yuan-jie, XUAN Xiao-ting, CUI Yan, et al. Research progress and thawing mechanism of ultrasonic assisted freezing in aquatic products and meat products[J]. Biological Processing, 2018, 16(3): 78-83.

[68] 徐永霞, 尹一鸣, 赵洪雷, 等. 肉桂醛协同超高压处理对牙鲆 鱼片冷藏期间品质变化的影响[J]. 食品科学, 2019, 40(15): 225-230.

XU Yong-xia, YIN Yi-ming, ZHAO Hong-lei, et al. Effect of cinnamaldehyde combined with ultra high pressure treatment on quality change of flounder fillets during cold storage[J]. Food Science,

(上接第105页)

- [17] TSUNG-YI L, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, HI, USA: Institute of Electrical and Electronics Engineering, 2017: 2 117-2 125.
- [18] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1 137-1 149.
- [19] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482.
 ZHANG Shun, GONG Yi-hong, WANG Jin-jun. The development of deep convolution neural network and its applications on computer

(上接第192页)

- [21] 周丽丽, 杨则宜, 伊木清, 等. 中国运动员膳食营养状况调查 分析与改进建议[J]. 中国运动医学杂志, 2002, 21(3): 278-283. ZHOU Li-li, YANG Ze-yi, YI Mu-qing, et al. Investigation and analysis of dietary nutrition status of Chinese athletes and suggestions for improvement [J]. Chinese Journal of Sports Medicine, 2002, 21(3): 278-283.
- [22] KERKSICK C M, WILBORN C D, ROBERTS M D, et al. ISSN exercise & sports nutrition review update: Research and recommendations[J]. Journal of the International Society of Sports Nutrition, 2018, 15(1): 63-71.
- [23] 史文生. 全麦饮食配合体育运动改善男性雄性激素水平[J]. 食品与机械, 2019, 35(3): 48-51.

2019, 40(15): 225-230.

- [69] SUN Qin-xiu, SUN Fang-da, XIA Xiu-fang, et al. The comparison of ultrasound-assisted immersion freezing, air freezing and immersion freezing on the muscle quality and physicochemical properties of common carp (Cyprinus carpio) during freezing storage[J]. Ultrasonics Sonochemistry, 2019, 51: 281-291.
- [70] CARTAGENA L, PUÉRTOLAS E, MARANÓN DE I M. Evolution of quality parameters of highpressure processing (HPP) pretreated albacore (Thunnus alalunga) during long-term frozen storage[J]. Innovative Food Science & Emerging Technologies, 2020, 62: 102334.
- [71] HAFEZPARAST-MOADAB N, HAMDAMI N, DALVI-ISFAHAN M, et al. Effects of radiofrequency-assisted freezing on microstructure and quality of rainbow trout (Oncorhynchus mykiss) fillet[J]. Innovative Food Science and Emerging Technologies, 2018, 47: 81-87.
- [72] PITA-CALVO C, GUERRA-RODRÍGUEZ E, SARAIVA J A, et al. High-pressure processing before freezing and frozen storage of European hake (Merluccius merluccius): Effect on mechanical properties and visual appearance[J]. European Food Research and Technology, 2018, 244(3): 423-431.

vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482.

[20] 梁鸿, 王庆玮, 张千, 等. 小目标检测技术研究综述[J]. 计算机 工程与应用, 2021, 57(1): 17-28.
LIANG Hong, WANG Qing-wei, ZHANG Qian, et al. Small object detection technology: A review[J]. Computer Engineering and Ap-

plications, 2021, 57(1): 17-28.

- [21] HU Jie, LI Shen, SUN Gang. Squeeze-and-excitation networks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City, UT, USA: Institute of Electrical and Electronics Engineering, 2018: 7 132-7 141.
- [22] LI Xiang, WANG Wen-hai, HU Xiao-lin, et al. Selective kernel networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: Institute of Electrical and Electronics Engineering, 2019: 510-519.

SHI Wen-sheng. Improvement of male androgen level by whole wheat diet combined with sports[J]. Food & Machinery, 2019, 35 (3): 48-51.

[24] 黄国阳. 2 种运动食品对人体运动能力的影响对比研究[J]. 食品与机械, 2019, 35(4): 213-216.
HUANG Guo-yang. Comparative study on the effects of two sports foods on human exercise ability [J]. Food & Machinery,

sports foods on human exercise ability [J]. Food & Machinery 2019, 35(4): 213-216.

[25] 李明. 运动饮料与口服液盐对高温环境下大鼠新陈代谢的影响[J]. 食品与机械, 2020, 36(4): 202-206.

LI Ming. Effects of sports drinks and oral liquid salts on metabolism of rats under high temperature environment[J]. Food & Machinery, 2020, 36(4): 202-206.