

DOI: 10. 13652/j. issn. 1003-5788, 2016, 02, 013

Folin-Ciocalteu 比色法测定大麦糟中总酚条件的优化

Determination of total polyphenolsin barley spent gains by Folin-Ciocalteu colorimetric method

梅 进 丁文平 熊金娟 庄 坤

MEI Jin DING Wen-ping XIONG Jin-juan ZHUANG Kun (武汉轻工大学食品科学与工程学院,湖北 武汉 430023)

(College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China)

摘要: 采用 Folin-Ciocalteu 比色法测定大麦糟中总酚含量,以没食子酸为参照品确定最佳测定条件。结果表明, Folin-Ciocalteu 用量 $1.0~\mathrm{mL}$, $8\%~\mathrm{Na_2\,CO_3}$ 用量 $3.0~\mathrm{mL}$, 显色温度 $25~\mathrm{^{\circ}C}$, 反应时间 $60~\mathrm{min}$, 避光, 检测波长 $760~\mathrm{nm}$, 没食子酸浓度在 $1\sim8~\mu\mathrm{g/mL}$ 时与吸光度具有良好线性关系, 其回归方程为 $y=0.121x+0.017~\mathrm{1}$, $R^2=0.999~\mathrm{2}$ 。该方法操作简单、稳定性好、准确度高, 可用于大麦多酚的定量分析。

关键词:大麦糟;多酚;Folin-Ciocalteu

Abstract: The total polyphenol content in barley spent gains were analyzed by Folin-Ciocalteu method. The optimum conditions were investigated using gallic acid as standard. and were as followed: Folin-Ciocalteu reagent 1.0 mL, 8% Na₂CO₃ 3.0 mL, developing temperature 25 °C, reaction time 60 min, in darkness. Then the solution was detected at the wavelength of 760 nm. When the gallic acid was in range of $0 \sim 8~\mu g/mL$, the concentration and the absorbance value had a good linear relationship. The regression equation was found as followed: y=0.121x+0.017 1, $R^2=0.999$ 2. This method had advantages of conciseness, good stability and high accuracy, which is suitable for analysis of polyphenol in barley spent gains.

Keywords: barley spent gains; polyphenols; Folin-Ciocalteu

大麦糟是大麦精以及啤酒生产的主要副产品,具有较高的营养价值,含有丰富的蛋白质、脂肪、可溶性膳食纤维和多酚等。目前关于大麦糟的研究[1-5]主要在将其转化为高蛋白质源、高膳食纤维源方面,忽视了它在食品工业上的独特价值,对大麦糟的精深加工、功能因子开发及综合利用方面也少有涉及。多酚是含有多羟基酚类化合物的总称,在植物体内的含量较为丰富[6],对于植物的生理和形态起着非常重要的作用[7]。多酚具有较强的抗氧化作用和清除自由基的

能力,另外,还具有抗氧化、抗癌、抗辐射、降血压、预防心脑血管疾病以及抑菌消炎抗病毒等作用[8-12]。目前中国已有对大麦糟多酚的研究[13],与其他原料相比,大麦糟中多酚的含量丰富且相对稳定,成本低廉,利用其生产富含多酚的产品,是综合有效利用大麦糟资源并提高其产品附加值的有效徐径之一。

目前总酚含量的测定方法有纸层析、气液色谱、薄层层 析、高效液相色谱、Folin-Ciocalteu 比色法等[14-15]。层析方 法在准确性和检测速度方面都存在缺陷;气液色谱对酚类物 质的检测速度快,灵敏度高,但该方法的衍生化处理较麻烦; 高效液相色谱法较昂贵,不适合大量定量分析[16]。Folin-Ciocalteu 比色法原理是在碱液中,酚类化合物将钨钼酸还原生 成蓝色络合物,其颜色的深浅与多酚含量成正比[17],其中 Folin-Ciocalteu 比色法操作简单、化学干扰少、灵敏度高,应 用也最为广泛[18],但将 Folin-Ciocalteu 比色法用于大麦糟中 总酚含量的测定未见报道。大麦经过发酵过程得到大麦糟, 大麦中多酚的成分和含量处于动态变化之中。本研究拟通 过对 Folin-Ciocalteu 比色法测定大麦糟中多酚的工艺条件 优化,以期得到一种简便实用的测定方法,建立一个测定大 麦糟多酚的最佳反应体系,适合对大麦糟或其他经过类似生 产过程产生的副产物中总酚含量进行测定,为后续多酚的提 取和利用提供依据。

1 材料与方法

1.1 材料与仪器

大麦糟:江苏华稼生物科技有限公司,烘干后粉碎,过 80目筛后置于-20℃冰箱备用;

福林酚:色谱纯,国药集团化学试剂有限公司; 没食子酸:色谱纯,东京化成工业株式会社; 碳酸钠、乙醇:化学纯,国药集团化学试剂有限公司; 旋片式真空泵:2XZ-2型,临海市精工真空设备厂; 旋转蒸发仪:RE-52A型,上海亚荣生化仪器厂;

作者简介:梅进,女,武汉轻工大学在读硕士研究生。

通讯作者:丁文平(1971一),男,武汉轻工大学教授,博士。

E-mail: whdingwp@163.com

收稿日期:2015-10-26

电热恒温水浴锅: HH-S型, 巩义市英峪予华仪器厂; 高速离心机: TGL-16C型, 上海安亭仪器有限公司;

紫外可见分光光度计: T6型,北京普析通用仪器有限责任公司;

超声波提取器: THC-2B型,济宁天华超声电子仪器有限公司:

电子分析天平: AL204型, 梅特勒—托利多仪器(上海)有限公司。

1.2 试验方法

1.2.1 对照品标准液的配制 精确称取 0.5000 g 没食子酸标品,用少量蒸馏水溶解后,再用蒸馏水定容至 100 mL,移出 1.0 mL 到 100 mL 容量瓶后,加蒸馏水定容,配制成浓度为 $50\mu g/m$ L 没食子酸标准溶液。

1.2.2 样品处理

大麦糟(1.00 g)及 70% 乙醇溶液(30 mL)→超声提取(320 W,30 min)→离心(4 000 r/min,20 min)→取上清液→旋转蒸发至干燥(40 ℃)→加蒸馏水溶解并定容(20 mL)

1.2.3 比色法测定条件的优化

- (1) 扫描波长的选择:取 50 µg/mL 没食子酸标准溶液 1.0 mL,加入福林酚试剂 1.0 mL,8% Na₂CO₃溶液 3.0 mL,在 30 ℃下避光反应 1 h。用蒸馏水定容至 10 mL,在可见光光度计下进行 500~900 nm 全波段扫描。
- (2) 福林酚试剂添加量的确定:取 50 μ g/mL 没食子酸标准溶液 0.5 mL,加人同浓度不同体积的福林酚试剂,没食子酸与福林酚的体积比分别为 1:1,1:2,1:3,1:4,1:5,1:6,再加人 8% Na₂CO₃溶液 3.0 mL,在 30 ℃下避光静置反应 1 h。反应结束后用蒸馏水定容到 10 mL,测定吸光值,重复 3 次。
- (3) 碳酸钠溶液浓度的确定:取 50 μg/mL 没食子酸溶液 0.5 mL,加入福林酚试剂 1.0 mL,再加人 3.0 mL Na₂ CO₃ 质量分数分别为 7%,8%,9%,10%,11%,在 30 ℃下避光静置 反应 1 h。用蒸馏水定容到 10 mL,测定吸光值,重复 3 次。
- (4) 碳酸钠溶液比例的确定:在 50 μ g/mL 的没食子酸溶液 0.5 mL,福林酚试剂 1 mL,避光条件下反应温度 30 ℃,反应时间 1 h 的条件下,研究福林酚试剂与碳酸钠溶液的体积比(3:1,2:1,1:1,1:2,1:3,1:4)对溶液吸光值的影响,重复 3 次。
- (5) 反应温度与时间的确定:取 50 μg/mL 没食子酸溶液 0.5 mL,加入福林酚试剂 1.0 mL,8% Na₂ CO₃ 溶液 3.0 mL,反应温度分别为 15,25,40,55,70 $^{\circ}$ 、反应时间分别为 5,15,30,60,120,160 min,反应结束后用蒸馏水定容到 10 mL,测定吸光值,重复 3 次。
- (6) 放置条件的确定:取没食子酸标准溶液 0.5 mL,加 人福林酚试剂 1 mL,8% Na₂ CO₃ 溶液 3 mL,分别放在避光 和不避光的条件下,在 25 ℃反应 60 min 后用蒸馏水定容到 10 mL,测定吸光值,重复 3 次。

1.3 Folin-Ciocalteu 比色方法的评价

1.3.1 标准曲线的制作 精确称取 0.100 0 g 没食子酸的标准品,用蒸馏水溶解后定容到 100 mL,分别移取 0.0,0.1,

0. 2,0. 3,0. 4,0. 5,0. 6,0. 8 mL 至 100 mL 容量瓶,定容,得到浓度为 0. 0,1. 0,2. 0,3. 0,4. 0,5. 0,6. 0,8. 0 μ g/mL 没食子酸标准溶液。取各浓度没食子酸标准溶液 0. 5 mL,加人福林酚试剂 1 mL,质量分数 8%的 Na₂ CO₃溶液 3 mL,在 25 ℃下避光反应 60 min 后定容至 10 mL,在 760 nm 下测定溶液的吸光值^[19],重复 3 次。

- 1.3.2 方法精密度试验 取 0.5 mL 一定浓度大麦糟提取物的水溶液 6 份,在一定条件下反应后测定其中总酚的含量。
- 1.3.3 方法回收率试验 取一定量大麦糟提取物的水溶液测定其中总分的含量,然后向其中添加一定量的没食子酸,根据已制作的标准曲线算出实测值,然后计算福林酚比色法的回收率。

2 结果与分析

2.1 测定条件的优化

2.1.1 检测波长的确定 在 $500\sim900$ nm 下进行全波段扫描,结果见图 1。由图 1 可知,吸光度值随着波长的增加先增加后减小,在 760 nm 处有最大吸收峰。因此采用 760 nm 作为最佳吸收波长。

图 1 没食子酸标准溶液的全波段扫描

Figure 1 All-waveband scaning of gallic acid standard solution

- 2.1.2 福林酚试剂添加量的确定 由图 2 可知,随着没食子酸标准溶液与福林酚体积比的增加,溶液吸光值先增加后减小,当没食子酸与福林酚体积比1:2 时,吸光值达到最大值。因此考虑没食子酸标准溶液与福林酚体积比1:2 时最佳。
- 2.1.3 碳酸钠试剂浓度的选择 由图 3 可知,随着碳酸钠溶液浓度的增加,溶液的吸光值先增大后减小,可能是由于碳酸钠溶液浓度过高不利于蓝色络合物的形成,当碳酸钠浓度

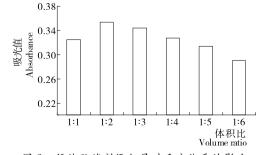


图 2 福林酚试剂添加量对反应体系的影响

Figure 2 Effect of the amount of the foline-phenol on the reaction system

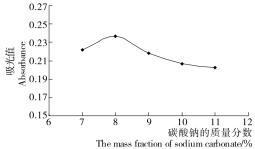


图 3 碳酸钠溶液浓度对反应体系的影响

Figure 3 Effect of sodium carbonate concentration on the reaction system

为8%时溶液的吸光值最大。因此,8%碳酸钠溶液作为反应 体系最佳碳酸钠溶液浓度。

2.1.4 碳酸钠溶液比例的确定 由图 4 可知,随着福林酚与碳酸钠溶液体积比的减小,溶液吸光值先增大后减小,可能是由于碳酸钠溶液浓度较小时不利于反应的充分进行,随着碳酸钠比例的增加反应逐渐完全,达到溶液的最大吸光值,当碳酸钠溶液继续增加时,溶液的碱性逐渐增大,不利于蓝色络合物的生成,溶液的吸光值下降。福林酚和碳酸钠溶液体积比1:3 时溶液的吸光值最大,确定为最佳条件。

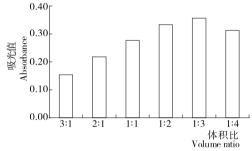


图 4 碳酸钠溶液比例对反应体系的影响

Figure 4 Effect of sodium carbonate ratio on the reaction system

2.1.5 反应温度与时间的确定 由表 1 可知,反应体系经过 160 min 的反应时,在 $25\sim70$ ℃下随着温度的升高,溶液的吸光值逐渐减小,70 ℃时吸光值为 0.165,可见温度过高或者过低对反应体系的吸光值都有影响。在 25,40 ℃时溶液吸光值差异较小。在高温度下,反应的颜色相对较浅,溶液的吸光值也较低,在高温条件下所生成的蓝色络合物不稳定,容易被分解[20]。而 25 ℃时吸光度达到最大值,反应体系

表 1 反应温度和时间对吸光值的影响

Table 1 Effect of temperature and time on absorbance of the reaction system

温度/℃	反应时间/min						
	5	15	30	60	120	160	
15	0.277	0.286	0.292	0.297	0.302	0.309	
25	0.295	0.299	0.303	0.315	0.316	0.314	
40	0.301	0.304	0.309	0.311	0.306	0.310	
55	0.296	0.306	0.298	0.279	0.272	0.269	
70	0.293	0.293	0.262	0.233	0.217	0.165	

在 60 min 后达到稳定状态,综合考虑,总酚含量的测定可在 25 ℃下反应 60 min 后进行。

2.1.6 放置条件的确定 在避光条件下,所产生的蓝色络合物不会被光分解,具有较大的吸光值(0.332)。因此,整个反应体系要在避光条件下进行。

2.2 福林酚比色方法的评价

2.2.1 标准曲线的制作 图 5 表明,当没食子酸的浓度范围为 $1\sim8~\mu g/mL$ 时,与吸光值具有线性关系,在此浓度范围内的线性回归方程为 y=0. 121x+0. 017~1,相关系数为 0.999 2,线性关系良好。总酚的量可以按标准曲线换算成没食子酸当量来反映。

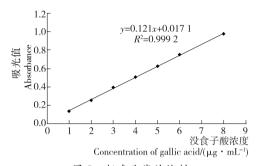


图 5 标准曲线的绘制

Figure 5 The standard curves

2.2.2 精密度试验 对 Folin-Ciocalteu 比色法测定大麦糟多酚进行精密度试验,对一定浓度的大麦糟提取物水溶液进行6次比色测定,其吸光值的 RSD 为 1.127%,说明该方法精密度较高,能够满足样品点酚的测定。

2.2.3 加标回收率试验 以没食子酸为标品,采用上述方法测定大麦糟多酚的含量,由表 2 可知,Folin-Ciocalteu 比色法测定大麦糟多酚回收率的平均值为 98.4%,变异系数为 2.13%,说明该方法较准确。

3 结论

本试验以吸光度为评价指标,对大麦糟中总酚的提取方法、检测波长,反应体系中溶剂的用量、反应温度和时间、静置条件进行了优化并对 Folin-Ciocalteu 比色法的精密度和加标回收率进行了研究,以没食子酸标准溶液作为对照,确定的 Folin-Ciocalteu 比色法测定大麦糟中总酚的最佳反应体系条件为: Folin-Ciocalteu 试剂 1~mL, $8\%~\text{Na}_2~\text{CO}_3~\text{溶液}$ 3~mL, 25~℃下避光反应 60~min 后定容 10~mL, 在~760~nm 下

表 2 回收率试验

Table 2 The recovery experiment

样品	加标量/	实测值/	回收率/	平均值/	变异系数/
标号	μg	μg	%	%	%
1	10	9.62	96.2		
2	10	9.67	96.7		
3	20	20.38	101.9	98.4	2.13
4	20	20.03	100.2	90.4	
5	30	29.68	98.9		
6	30	28.93	96.4		

测定吸光度。没食子酸标准溶液的浓度范围为 $1\sim8~\mu g/mL$ 时与其吸光值具有良好的线性关系($R^2=0.999~2$),精密度 RSD 为 1.127%,平均回收率为 98.4%,RDS 为 2.13%。说明本试验建立的最佳反应体系灵敏度高、准确性好、操作简单、稳定性强,适合于大麦糟中总酚含量的测定。

参考文献

- [1] 王家林,王煜. 啤酒糟的综合应用[J]. 酿酒科技,2009(7):99-102.
- [2] Manu-Barfo P, Nortey T, Naazie A. Effect of sorghum-barley brewer's spent grain as a feed ingredient on broiler performance and carcass characteristics[J]. Animal Health and Production, 2013, 61(1): 67-74.
- [3] 于晓燕. 碱法备制大麦槽膳食纤维的应用[J]. 生物技术世界, 2012(4): 17-19.
- [4] 蔡国林,张麟,陆健.利用啤酒糟制备高品质饲料蛋白[J].食品与发酵工业,2015,41(2):89-94.
- [5] 叶春苗, 王子丹. 啤酒糟综合利用研究现状[J]. 农业科技与装备, 2015(3): 63-64.
- [6] 朱霞,李焕荣,罗游. Folin-Ciocalteu 比色法测定核桃青皮中多酚含量条件的优化[J]. 食品与机械,2014,30(4):122-125.
- [7] 范金波, 蔡茜彤. 果蔬中多酚成分及其分析方法的研究进展 [J]. 食品工业科技, 2014, 35(4): 374-379.
- [8] 李好,钟海燕,方学智,等.油茶籽成熟过程中抗氧化物质的变化规律[J].食品与机械,2013,29(5):6-9.
- [9] Papandreou M A, Dimakopoulou A, Linardaki Z I, et al. Effect of a polyphenol-rich wild blue berry extract on cognitive performance of mice, brain antioxidant markers and acetylcholine ester-

- ase activity[J]. Behavioural Brain Research, 2009, 198(2): 352-358.
- [10] Chung S, Yao H, Caito S, et al. Regulation of SIRT1 in cellular functions: role of polyphenols[J]. Archives of Biochemistry and Biophysics, 2010, 501(1): 79-90.
- [11] Rodrigo R, Miranda A, Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease[J]. Clinica Chimica Acta, 2011, 412(5): 410-424.
- [12] 黄河,曹湛慧,曹增梅,等. 番石榴多酚对虾肉糜的保鲜效果研究[J]. 食品与机械,2014,30(1):159-161.
- [13] 梅进,丁文平,刘航,等. 大麦糟多酚体外抗氧化活性的研究 [J]. 粮食与饲料工业,2015(11):40-43.
- [14] 徐宝才,肖刚,丁霄霖,等. 苦荞中酚酸和原花色素的分析测 定[J]. 食品与发酵工业,2002,28(12):32-37.
- [15] 王岚,方瑞斌,李忠,等. 固相提取一高效液相色谱法测定烟草样品中主要的植物多酚[J]. 色谱,2001,19(6):564-566.
- [16] 雷昌贵, 孟字竹, 刘蒙佳, 等. 食品中多酚类化合物测定方法研究进展[J]. 粮油食品科技, 2007, 15(4): 61-63.
- [17] 刘清,李玉,姚惠源. Folin-Cioealteu 比色法测定大麦提取液中总多酚的含量[J]. 食品科技,2007(4):175-177.
- [18] Yang J, Gadi R, Paulino R, et al. Total phenolice, ascorbic acid and antioxidant capacity of noni (*Morindacitri folia L.*) juice and powder as affected by illumination during storage[J]. Food Chemistry, 2010, 122(3): 627-632.
- [19] 李静, 聂继云, 李海飞, 等. Folin-酚法测定水果及其制品中总 多酚含量的条件[J]. 果树学报, 2008, 25(1): 126-131.
- [20] 刘丽香, Tanguy Laura, 梁兴飞, 等. Folin-Ciocalteu 比色法测 定苦丁茶中多酚含量[J]. 茶叶科学, 2008, 28(2): 101-106.

(上接第30页)

贺兰山东麓产区冰葡萄威代尔的埋土期防寒的研究还需进一步深入,以保证原料采收后树体安全越冬。

参考文献

- [1] 李艳霞,马丽艳,战吉成,等.威代尔冰葡萄酒香气测定[J].中外葡萄与葡萄酒,2006(2):10-15.
- [2] 李志江, 刘彬, 戴凌燕, 等. 冰酒的研究现状与发展趋势[J]. 酿酒, 2006, 33(4): 48-50.
- [3] Jancis Robinson. Icewine, Canada's wines of winfer[J]. Vine-yard and Winery Management, 2002, 58(6): 12-13.
- [4] 刘福强, 赵新节. 浅谈冰酒性状及发展前景[J]. 中国酿造, 2008 (24): 11-13.
- [5] 殷展波,崔丽宏,刘玉成,等. 威代尔冰葡萄引种栽培试验[J]. 河北果树,2007(3): 5-9.
- [6] 孙万河, 孟繁荣, 王思利, 等. 冰酒葡萄品种威代尔的引进栽培研究[J]. 农业科技通讯, 2008(2): 47-50.
- [7] 李玉鼎,任立冬,王国珍.威代尔品种在贺兰山东麓生态条件下的栽培表现[J].中外葡萄与葡萄酒,2011(2):31-32.
- [8] 张新宁,杨学习,石桃红,等.酿酒葡萄品种威代尔在宁夏的引种栽培报告[J].中外葡萄与葡萄酒,2012(3):36-40.

- [9] 王银川,刘效义,王泽鹏. 宁夏贺兰山东麓气候条件及品种区划 [1]. 宁夏科技,2002(1):36,47.
- [10] 裴广仁. 辽宁恒仁产区冰葡萄酒关键工艺研究[D]. 烟台: 烟台 大学, 2010.
- [11] 王华. 葡萄与葡萄酒实验技术操作规范[M]. 西安: 西安地图 出版社,1999.
- [12] 梁艳英,张莉,王华."户太8号"葡萄及其冰酒特性研究[J].中国酿造,2013,32(1):90-93.
- [13] 宋谨, 范培格, 吴本宏, 等. 葡萄延迟成熟阶段间糖含量及其 代谢酶活性的变化[J]. 园艺学报, 2007, 34(4): 823-828.
- [14] 宋瑾. 葡萄浆果成熟与延迟采收期间糖酸变化特点的研究[D]. 北京:中国科学院植物研究所,2006;4.
- [15] 杨明挚,杨华峰,罗金海,等.云南高原冰葡萄酒生产可行性 理论与实践[J].酿酒科技,2007(5):42-44.
- [16] 张平,元贤哲,李新榜.冰葡萄酒威代尔的酿造工艺[J].中外葡萄与葡萄酒,2009(2):54-56.
- [17] 邵威平. 冰酒生产工艺及其品质影响因素[J]. 酿酒,2004,31 (2):73-74.
- [18] 张晓煜,李红英,陈卫平,等.中国北方冰酒葡萄生态区划初 探[J].北方园艺,2014(21):37-39.
- [19] 李树志,鲁长征,山永凯,等. 发酵条件对沙棘冰酒品质的影响[J]. 食品与机械,2009,25(4):128-130.