

DOI:10.13652/j. issn. 1003-5788. 2015. 03. 041

超临界 CO2 萃取崖柏精油的研究

Research on supercritical CO₂ extraction of Thuja sutchuenensis essential oil

王亚琦1 陈奕洪2 黄卫文1.3 莫启武4 周 洁1

 $WANG\ Ya-qi^1$ $CHEN\ Yi-hong^2$ $HUANG\ Wei-wen^{1,3}$ $MO\ Qi-wu^4$ $ZHOU\ Jie^1$ (1. 中南林业科技大学食品科学与工程学院, 湖南 长沙 410004; 2. 广东江门市藏寿天然艺术品有限公司,

广东 江门 529000;3. 稻谷及副产物深加工国家工程实验室,湖南 长沙 410004;

- 4. 国家轻工业香料化妆品洗涤用品质量监督检测广州站,广东 广州 510075)
- (1. Central South University of Forestry and Technology, Changsha, Hunan 410004, China;
- $2. \ \textit{Guangdong Jiangmen City Cang Shou Natural Art Ware Co. Ltd.}, \ \textit{Jiangmen}, \ \textit{Guangdong 529000}, \ \textit{China};$
- 3. National Engineering Laboratory for Rice and By-product Deep Processing, Changsha, Hunan 410004, China;
 - 4. Guangzhou Station for Supervision and Inspection of National Light Industry Spices Cosmetics

 Cleaning Products Quality, Guangzhou, Guangdong 510075, China)

摘要:采用超临界 CO_2 萃取法提取崖柏精油,通过正交试验对提取工艺进行优化,用 GC—MS 定性定量分析检测崖柏精油成分。结果表明,影响崖柏精油提取率的主要因素顺序为萃取压力、萃取温度、动态萃取时间;优化后的工艺条件为:物料装料系数 0.68,萃取压力 20 MPa,萃取温度 50 $^{\circ}$ 、动态萃取时间 60 min,静态萃取时间 30 min,该条件下崖柏精油提取率为 $7.20\%\sim7.31\%$ 。崖柏精油中共鉴定出 28 种化学成分,主要为萜烯类合化物,其中罗汉柏烯、 α -雪松醇和花侧柏烯含量较高,其相对质量分数分别为 45.50%,25.72%,7.11%。

关键词:崖柏;精油;超临界 CO2 萃取;GC-MS

Abstract: Supercritical CO_2 extraction method was applied to essential oil from *Thuja sutchuenensis* in the present study. The composition of the essential oil was identified by GC-MS. The extraction conditions were optimized by orthogonal tests. Results: The main factors influencing the extraction yield are extraction pressure, extraction temperature and extraction dynamic time. The Optimization of process: filling coefficient was 0.68, the extraction pressure and temperature were 20 MPa and 50 $^{\circ}C$, dynamic time was 60 min and static time was 30 min. The essential oil extraction rate were 7.20% \sim 7.31% under this condition. 28 components were identified in the *Thuja sutchuenensis*, primarily terpene compounds containing Thujopsene, α -cedrol and cuparene, accounting for 45.5%, 25.41% and 7.11%, respectively.

Keywords: Thuja sutchuenensis essential oil; supercritical CO2; ex-

基金项目:国家林业局 948 项目(编号:2012-4-17)

作者简介:王亚琦(1990—),男,中南林业科技大学在读硕士研究生。 E-mail: wyq0920@qq.com

通讯作者:黄卫文

收稿日期:2014-09-15

traction: GC-MS

崖柏(Thuja sutchuenensis)为柏科(cupressaceae)崖柏 属(thuja)常绿乔木,是一类起源于恐龙时代的"活化石"[1]。 经研究[2-4]发现,崖柏的根、茎、叶中含有罗汉柏烯、α-蒎烯、 柠檬烯等萜类化合物,这些萜类化合物脂溶性佳,分子小,具 有抗菌、抗氧化、抗肿瘤、降血压、驱虫、抗炎、利尿、祛痰、健 身强体的功效。从崖柏中提取的崖柏精油亦含有上述许多 有益成分,可应用于医疗保健、食品工业、果蔬保鲜、日用化 妆品等领域[5]。超临界 CO2 流体萃取方法应用于植物精油 的提取,具有萃取速度快、效率高,产品分离流程简单且应用 广等优点[6,7]。由于崖柏资源的稀有,尚未见用超临界 CO2 萃取崖柏精油的报道,近年来,已进行了崖柏的人工种植试 验,并获得成功,为对崖柏的研究开发提供了条件[8,9]。本研 究拟采用超临界 CO₂ 流体萃取法从崖柏中提取精油,通过 单因素试验和正交试验确定最佳的萃取工艺条件,并采用 GC-MC 对该工艺获得的崖柏精油进行成分分析和鉴定,为 崖柏扩大种植及其开发利用提供参考。

1 材料与方法

1.1 材料与试剂

崖柏(根部)切片: $5 \text{ mm} \times 5 \text{ mm} \times 0.2 \text{ mm}$,广东江门市 藏寿天然艺术品有限公司;

- 二氧化碳:纯度≥99.9%,长沙中益气体有限公司;
- 二氯甲烷:色谱纯,上海化学试剂有限公司。

1.2 仪器与设备

超临界 CO2 萃取装置: DY120-50-02 型, 江苏南通华安

超临界萃取有限公司;

气相色谱 - 质谱联用仪: QP2010 Ultra 型,日本岛津公司。

1.3 方法

1.3.1 工艺流程

崖柏根切片→超临界 CO₂ 萃取 (CO₂ 钢瓶→冷却系统→高压泵→萃取釜→分离釜)→收集精油 1.3.2 工艺方法 准确称取 150.0 g 崖柏切片装人 2 L 的

1.3.2 工艺方法 准确称取 150.0 g 崖柏切片装入 2 L 的 超临界 CO_2 萃取釜中,启动设备,调节萃取釜和分离釜的温度、压力及 CO_2 流量进行循环萃取,萃取一定时间后从分离釜中收集萃出物,准确测定所得精油的体积和质量,置于 4 \mathbb{C} 密封保存并计算崖柏精油的提取率。

1.3.3 崖柏精油得率 按式(1)计算:

崖柏精油得率 = 萃取所得崖柏精油质量 × 100% (1) 崖柏样品质量
1.3.4 装料系数计算 本试验所用小试装置萃取釜容积为 2 L,测定出 2 L 的萃取釜中装满崖柏切片的总重量为 220 g。 装料系数按式(2)计算:

1.3.5 单因素试验设计

- (1) 物料装料系数: 称取 150.0 g 崖柏切片, 固定萃取压力 20 MPa、萃取温度 45 ℃、分离压力 8 MPa、分离温度 50 ℃、CO₂ 流速 1.5 L/min、静态萃取时间 30 min、动态萃取时间 50 min 条件下, 研究物料装料系数(0.3,0.4,0.5,0.6,0.7,0.8,0.9) 对崖柏精油提取率的影响。
- (2) 萃取压力: 称取 150.0 g 崖柏切片, 固定萃取温度 $45 \, ^{\circ} \, ^$
- (3) 萃取温度: 称取 150.0 g 崖柏切片, 固定萃取压力 20 MPa、分离压力 8 MPa、分离温度 50 ℃、CO₂ 流速 1.5 L/min、静态萃取时间 30 min、动态萃取时间为 50 min 条件下, 研究萃取温度(35,40,45,50,55,60 ℃) 对崖柏精油提取率的影响。
- (4) 静态萃取时间: 称取 150.0 g 崖柏切片, 固定萃取压力 20 MPa、萃取温度 45 ℃、分离压力 8 MPa、分离温度 50 ℃、CO₂ 流速 1.5 L/min、动态萃取时间 50 min 条件下,研究静态萃取时间(10,20,30,40,50 min) 对崖柏精油提取率的影响。
- (5) 动态萃取时间:称取 150.0 g 崖柏切片,固定萃取压力 20 MPa、萃取温度 45 \mathbb{C} 、分离压力 8 MPa、分离温度 50 \mathbb{C} 、CO₂ 流速 1.5 L/min、静态萃取时间 30 min 条件下,研究动态萃取时间 (10,30,50,70,90 min) 对崖柏精油提取率的影响。
- 1.3.6 正交试验 在单因素试验的基础上,选取萃取压力、

萃取温度以及动态萃取时间进行 3 因素 3 水平 L₉(3³)正交试验,优化崖柏精油的萃取工艺条件。

- 1.3.7 精油分析方法 所得到最佳工艺的崖柏精油用二氯 甲烷稀释 10 倍,过 0.22 μm 有机滤膜后进行 GC-MC 鉴定分析。
- (1) 气相色谱条件: Rtx-5MS(30 m×0.25 mm×0.25 μ m)色谱柱,进样量 1 μ L,分流比 100 : 1,进样口温度 260 $^{\circ}$ C,流速 1 mL/min,载气为高纯氦气。程序升温:初始温度 90 $^{\circ}$ C(保持 5 min),以 3 $^{\circ}$ C/min 速度升至 220 $^{\circ}$ C(保持 5 min),再以 10 $^{\circ}$ C/min 升至 250 $^{\circ}$ C。
- (2) 质谱条件:EI 电离源,电离电压 70 eV,离子源温度 230 ℃,四级杆温度 150 ℃,传输线温度 250 ℃,标准调谐, SCAN 质量扫描,溶剂延迟 5 min,扫描范围 35~600 amu。
- (3) 成分解析: GC—MS 分析, 获得精油的总离子流色 谱图(TIC), 利用 NIST05 质谱数据检索标准谱库解析成分, 对所得的谱图进行检索, 相似度大于 85%作为结构确认依据, 以峰面积归一法计算各组分相对质量分数。

2 结果与分析

2.1 单因素试验结果与分析

2.1.1 物料装料系数对崖柏精油萃取率的影响 超临界 CO_2 流体萃取的过程中,在不同的温度和压力下,萃取物料 可能会发生不同程度膨胀等现象,如果物料装量过满,容易造成堵塞,物料装量过少会直接影响萃取的收率。由图 1 可知,装料系数过小,提取率较低,主要因为萃取物料过少,剩余空间大与 CO_2 流体偏流,且萃取总量过小,管道损失较大。随着装料系数的增大提取率也增大,在 $0.6\sim0.8$ 时有较大的提取率,最后考虑提取率和安全性,选择装料系数为 0.68(150~g) 做后续的试验。

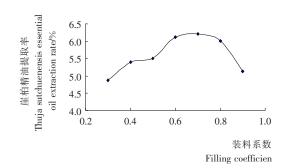


图 1 崖柏切片装料系数对崖柏精油提取率的影响 Figure 1 Effect of filling coefficient on Thuja sutchuen-

ensis essential oil extraction rate

2.1.2 萃取压力对崖柏精油提取率的影响 由图 2 可知,随着萃取压力增大,萃取率也增加,主要因为压力增大,超临界流体密度随之增大,从而萃取物在流体中的溶解度增大,当萃取压力达到 20 MPa 时萃取量最大。随后萃取压力继续增加,崖柏精油的萃取率逐渐降低,可能是因为萃取压力增

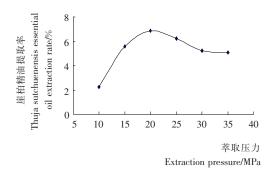


图 2 萃取压力对崖柏精油提取率的影响

Figure 2 Effect of extraction pressure on *Thuja sutchuen*ensis essential oil extraction rate

高后, CO_2 流体的密度必然变得更大,而 CO_2 流体的扩散性能会相应地减弱,从而造成两相接触传质速率的降低。同时在实际生产过程中,萃取压力太高会使成本变高,同样存在安全隐患,所以初步选择 20 MPa 为宜。

2.1.3 萃取温度对崖柏精油提取率的影响 由图 3 可知, 崖柏精油提取率先随温度升高而增加,50 ℃达到最大,温度 继续升高,崖柏精油萃取率反而降低。温度升高,一方面溶 质萃取精油在 CO₂ 流体的热运动速度加快,相应的溶剂蒸 气压增大,使得溶解度增大,另一方面,温度继续升高,CO₂ 流体密度变小,萃取物在 CO₂ 流体中的溶解度也相应减少, 而且过高温度也会导致胶体浸出影响细胞壁的通透性导致 精油难以带出,所以综合考虑选择 50 ℃为宜。

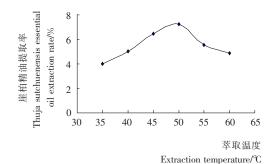


图 3 萃取温度对崖柏精油提取率的影响 Figure 3 Effect of extraction temperature on *Thuja*

sutchuenensis essential oil extraction rate

2.1.4 静态萃取时间对提取率的影响 由图 4 可知,随着静态萃取时间的变化,萃取率变化不明显,可能是因为崖柏

细胞壁的通透性较好,在30 min 有最大的萃取率,最后静态

萃取时间选择 30 min 为官。

虑选择 50 min 为最佳动态萃取时间。

2.1.5 动态萃取时间对崖柏精油提取率的影响 由图 5 可知,崖柏精油萃取率随动态萃取时间的延长而提高,动态萃取时间在 $10\sim50$ min 时,萃取率增加明显,在 50 min 时达最大值,之后提取率无明显变化,从提取率和节能低耗方面考

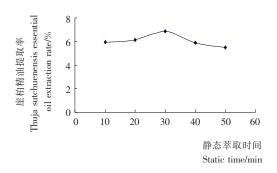


图 4 静态萃取时间对崖柏精油提取率的影响

Figure 4 Effect of static time on *Thuja sutchuenensis* essential oil extraction rate

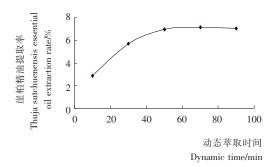


图 5 动态萃取时间对崖柏精油提取率的影响 Figure 5 Effect of dynamic time on *Thuja sutchuenensis* essential oil extraction rate

2.2 崖柏精油提取工艺优化

2.2.1 正交试验结果与分析 根据单因素试验结果,萃取压力、萃取温度、动态萃取时间对崖柏精油的提取率有较大影响,设计 L₉(3⁸)正交试验,进一步考察各因素对精油提取率的影响,优化提取工艺,试验因素与水平见表 1。

表 1 因素水平设计表

Table 1 Factors and levels of orthogonal test

水平	A 萃取压力/MPa	B 萃取温度/℃	C 动态萃取时间/min
1	15	45	40
2	20	50	50
3	25	55	60

由表 2 可知,各因素对提取率影响程度依次为: A>B> C,即:萃取压力>萃取温度>动态萃取时间。最佳提取条件为 $A_2B_2C_3$,即萃取压力 20 MPa,萃取温度 50 \mathbb{C} ,动态萃取时间 60 \min 。根据表 3 方差分析萃取压力显著,其他两个因素不显著。

2.2.2 验证实验 崖柏精油的提取在最佳工艺条件下,重复5次进行验证,提取率分别为7.23%,7.29%,7.31%,7.20%,7.25%,平均提取率为7.26%,标准偏差为0.0445,RSD为0.0061,表明此试验有良好的重现性。

提取与活性

表 2 L₃(3³)正交试验结果

Table 2 Results of L₉ (3³) orthogonal test

试验号	A	В	С	提取率/%
1	1	1	1	5.69
2	1	2	2	5.92
3	1	3	3	5.82
4	2	1	2	6.52
5	2	2	3	7.22
6	2	3	1	6.32
7	3	1	3	6.41
8	3	2	1	6.39
9	3	3	2	6.12
K_1	5.81	6.21	6.13	3
K_2	6.69	6.51	6.19)
K_3	6.31	6.09	6.48	3
R	0.88	0.42	0.35	j

表 3 正交试验结果方差分析

Table 3 Analysis of variance of orthogonal test

方差来源	离差平方和	自由度	均方(MS)	F 值	Sig.
A	1.160	2	0.583	43.341	0.023
В	0.286	2	0.143	10.675	0.086
C	0.213	2	0.107	7.974	0.111
D	0.0027	2	0.013	1.000	
误差E	0.03	2			
总和 T	1.67	8			

[†] $F_{0.01}(1,2) = 99; F_{0.05}(1,2) = 19$.

2.3 崖柏精油 GC-MS 分析

由表 4 可知,最佳工艺条件下用超临界 CO_2 萃取的崖柏精油经 GC—MS 分析鉴定出的 28 种化学成分中,以萜烯类化合物为主,其中罗汉柏烯、 α -雪松醇和花侧柏烯的含量较高,其相对质量分数分别为 45.50%,25.72%,7.11%。

3 结论

采用超临界 CO₂ 萃取可有效提取崖柏精油,提取率高于普通水蒸气蒸馏法,且缩短了萃取时间,具有低耗、高效、无污染等优点。本研究对超临界 CO₂ 萃取崖柏精油中单因素条件(物料装料系数、萃取压力、萃取温度、静态萃取时间、动态萃取时间)进行探究,并通过正交试验对萃取率有较大影响的 3 个因素(萃取压力、萃取温度、动态萃取时间)进行工艺优化,结果表明最佳提取工艺为:物料装料系数 0.68,萃取压力 20 MPa,萃取温度 50 ℃,动态萃取时间 60 min,静态萃取压力 20 MPa,萃取温度 50 ℃,动态萃取时间 60 min,静态萃

表 4 崖柏精油 GC-MS 分析结果

Table 4 Analytic results of GC—MS of *Thuja*sutchuenensis essential oil

序号	名称	相对质量	序号	名称	相对质量
	9-亚甲基-3-氧		14	花侧柏烯	7.11
1	双环 {5.3.0}	0.28	15	α-花柏烯	0.70
	十二-2-酮		16	β-金合欢烯	0.13
2	异长叶烯	0.38	17	β-雪松烯	1.07
3	长叶蒎烯	0.29	18	莰烯	0.10
4	α-柏木萜	3.00	19	环长叶烯	0.13
5	γ-衣兰油烯	1.50	20	喇叭烯	2.27
6	罗汉柏烯	45.50	21	α-雪松醇	25.72
7	松油烯	0.36	22	花侧柏醇	2.31
8	律草烯	0.16	23	γ-姜黄烯	0.80
9	α-古芸烯	0.19		白菖油萜环氧	
10	新异长叶烯,	0.63	24	化物	0.83
	8,9-二氢		25	花侧柏烯醇	0.20
11	大牛儿烯	0.04	26	α-红没药醇	1.62
12	α-姜黄烯	0.12	27	香橙烯	2.63
13	β-花柏烯	0.65	28	环氧白菖烯	1.40

取时间 30 min,此工艺条件下崖柏精油提取率为 7.20% ~ 7.31%。

参考文献

- 1 Xiang Qiao-ping, Farjon A, Li Zhen-yu, et al. Thuja sutchuenensis: a rediscovered species of the Cupressaceae [J]. Botanical Journal of the Linnean Society, 2002, 139(3): 305~310.
- 2 Bakkali F, Averbeck S, Averbeck D, et al. Biological effects of essential oils[J]. Food Chem. Toxicol., 2008, 46(2): 446~ 475.
- 3 Burt S A. Antibacterial activity of essential oils: potential applications in food[D]. Thesis: Utrecht University, 2007.
- 4 Gaysinsky S, Weiss J. Aromatic and spice plants: uses in food safety [J]. Stewart Post Harvest Rev., 2007, 3(2): 1~9.
- 5 李松,吴光斌,陈发河.超临界萃取琯溪蜜柚精油工艺优化及组分分析[J].食品与机械,2013,29(1):113~117.
- 6 梁健钦,杨焕琪,熊万娜,等. 超临界 CO₂ 萃取砂糖桔叶挥发油 及其 GC-MS 分析[J]. 食品与机械,2010,26(3):28~34.
- 7 王祥福. 崖柏群落生态学[D]. 北京: 中国林业科学研究院, 2008.
- 8 郑群明,吴楚材,谭益民,等.崖柏乙醇提取物抑菌作用的初步研究[J]. 中南林业科技大学学报,2011,31(4):66~69.
- 9 吴章文,吴楚材,陈奕洪,等.8种柏科植物的精气成分及其生理功效分析「J」.中南林业科技大学学报,2010,30(10):1~8.