Pt—Fe(Ⅲ)/MWCNTs 修饰电极伏安法测定 食品中的亚硝酸根

Determination of nitrite in food using Pt—Fe(III)/MWCNTs modified electrodes by voltammetry measurement

郝玉翠

HAO Yu-cui

(唐山学院环境与化学工程系,河北 唐山 063000)

(Department of Environmental and Chemical Engineering, Tangshan College, Tangshan, Hebei 063000, China)

摘要:采用滴涂法和电化学沉积法构建 Pt—Fe(\blacksquare)/多壁碳 纳米管(MWCNTs)修饰玻碳电极(Pt—Fe(\blacksquare)/MWCNTs/ GCE),研究该修饰电极对 NO₂⁻的电催化作用,并优化试验 条件,在该基础上建立一种差分脉冲伏安法(DPV)测定 NO₂⁻的新方法。NO₂⁻的氧化峰电流与其浓度在 3.0× $10^{-7}\sim 2.0\times 10^{-3}$ mol/L 范围内呈良好的线性关系(r = 0.999 3),检测限为 1.0×10^{-7} mol/L,将该方法用于食品中 NO₂⁻的测定,效果满意。

关键词:铂;Fe(Ⅲ);多壁碳纳米管;修饰电极;测定;亚硝 酸根

Abstract: The platinum particles-Fe (III) and multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes (Pt—Fe (\blacksquare)/MWCNTs/GCE) were prepared by drop coating and electrochemical deposition. The electrocatalytic property of Pt—Fe (\blacksquare)/MWCNTs/GCE on NO₂⁻ were studied, the experimental conditions were optimized and a differential pulse voltammetric method for determining NO₂⁻ was established. The oxidation peak current of NO₂⁻ is proportional to the concentration of NO₂⁻ over the range of 3.0×10⁻⁷ ~ 2.0×10⁻³ mol/L with the detection limit of 1.0×10⁻⁷ mol/L (r = 0.999 3). The method was applied to the determination of NO₂⁻ in food, and the result was satisfactory.

Keywords: platinum particle; ferric iron; multi-walled carbon nanotubes; modified electrode; determination; nitrite

亚硝酸盐(NO₂⁻)会使人体正常的血红蛋白氧化而失去 携氧能力,还可与各种胺类反应形成强致癌物亚硝胺,导致 消化系统癌症的发生^[1,2]。近年来,亚硝酸盐作为食品添加

作者简介:郝玉翠(1980一),女,唐山学院讲师,在读博士。 E-mail:haoyc001@163.com

收稿日期:2015-03-15

剂在食品工业中被广泛应用,因此,检测食品中亚硝酸盐的 含量具有重要意义。目前,NO2⁻检测方法有分光光度法^[3]、 色谱法^[4,5]、流动注射分析^[6]等,这些分析方法大多操作复 杂,分析速度慢,而化学修饰电极测定 NO2⁻具有成本低、程 序简单、响应快速等优点,近年来,成为该领域的研究热 点^[7-11]。

碳纳米管具有表面积大、导电性强和机械强度高等优 点,常被用于负载金属材料。碳纳米管与金属具有协同作 用,可提高复合材料的电催化性能^[12]。贵金属 Pt 具有良好 的电催化性能,金属 Pt 与 Fe(III)的协同作用可以表现出更 好的电催化性能^[13]。用上述相关材料制备对亚硝酸根具有 良好电催化氧化作用的化学修饰电极,利用亚硝酸根氧化峰 电流和亚硝酸根浓度在一定范围内呈线性关系的原理,可建 立修饰电极测定亚硝酸根的新方法。本研究拟采用物理滴 涂法和直接电化学沉积法制备 Pt—Fe(III)/多壁碳纳米管修 饰玻碳电极(Pt—Fe(III)/MWCNTs/GCE),并研究该修饰 电极对 NO₂⁻ 的电催化作用。在此基础上,优化其试验条 件,建立用 Pt—Fe(III)/MWCNTs/GCE 测定 NO₂⁻ 的新方 法,旨在将其用于食品中 NO₂⁻ 含量的测定。

1 材料与方法

1.1 仪器

电化学分析仪:CHI660C型,上海辰华仪器公司;

超声波清洗器:KQ-250DE型,昆山市超声仪器有限公司;

三电极系统(裸玻碳电极为基体工作电极(GCE)、饱和 甘汞电极(SCE)为参比电极,铂电极为对电极):上海辰华仪 器公司;

X射线衍射仪:Ultima Ⅳ型,日本理学公司;

基金项目:河北省高等学校科学技术研究项目(编号:z2014016);唐 山市科技局项目(编号:13130248z)

场发射扫描电镜:S-4800型,日本日立公司。

1.2 试剂

NaNO2:分析纯,天津市恒兴化学试剂制造有限公司; FeCl3:分析纯,天津市津东天正精细化学试剂厂; 氯铂酸:分析纯,博欧特(天津)化工贸易有限公司;

不同 pH 的 0.1 mol/L 磷酸盐缓冲溶液(PBS):由浓度 均为 0.1 mol/L 的 H₃PO₄、NaH₂PO₄ 和 Na₂HPO₄ 3 种溶液 配制而成,并采用 0.1 mol/L 的 HCl 调节 pH。

1.3 Pt-Fe(Ⅲ)/MWCNTs/GCE 的制备

1.3.1 MWCNTs 的纯化 将 0.1 g MWCNTs 放入 10 mL 浓 HNO₃ 中,加热回流 8 h,然后将所得 MWCNTs 悬浊液过滤,并用蒸馏水冲洗所得 MWCNTs 至滤液为中性。将所得 MWCNTs 烘干、研磨,备用。

1.3.2 GCE 的抛光与清洗 用粒径为 0.5 μm 的 Al₂O₃ 粉 悬浊液将 GCE 表面抛光成镜面,冲洗干净,再分别用无水乙 醇、蒸馏水超声清洗 5 min,备用。

1.3.3 MWCNTs/GCE 的制备 称取 5 mg 研磨过的 MWCNTs,溶于 10 mL 无水乙醇溶液中,用超声清洗器将 MWCNTs乙醇悬浊液超声 1 h,以使 MWCNTs 在无水乙醇 中分散均匀,然后取 20 μL 分散均匀的 MWCNTs乙醇悬浊 液,将其滴涂在 GCE 表面,待乙醇挥发后,即制得 MWC-NTs/GCE。

1.3.4 Pt—Fe(III)/MWCNTs/GCE 的制备 将 MWC-NTs/GCE 浸入 0.5 mol/L 的 H_2SO_4 溶液中,在 $-0.3 \sim$ 0.8 V范围内以 100 mV/s 的扫描速率循环伏安(CV)扫描 10 圈,使其活化。再将 MWCNTs/GCE 浸入 0.5 mol/L $H_2SO_4+1.8$ mmol/L $H_2PtCl_6+1.2$ mmol/L FeCl₃ 的溶液 中在 $-0.3 \sim 0.8$ V范围内以 50 mV/s 的扫描速率 CV 扫描 20 圈,使 Pt—Fe(III)电沉积在 MWCNTs/GCE 表面,即制得 Pt—Fe(III)/MWCNTs/GCE。

1.4 方法

将三电极浸入含 NO_2^- 的 PBS 溶液中,以 Pt—Fe(III)/ MWCNTs/GCE 为工作电极,在 0.4~0.9 V 电位范围内记 录 NO_2^- 在工作电极上的差分脉冲伏安(DPV)曲线,根据 DPV 曲线上 0.7 V 处的氧化峰电流进行 NO_2^- 的定量分析。

2 结果与讨论

2.1 Pt-Fe(III)的电沉积

Pt—Fe(III)在 MWCNTs/GCE 上的电沉积 CV 曲线见 图 1。由图 1 可知,在 0.3~0.5 V 时存在一对氧化还原峰 a 和 a',这是由 Fe³⁺/Fe²⁺氧化还原电对产生的。在一0.2~ 0 V 时的氧化还原峰 b 和 b是 Pt 的特征峰,这些峰是由吸附 氢的电化学氧化与还原反应产生的。吸附氢氧化还原峰的形 状、数目和大小是由暴露 Pt 的晶面、电极的预处理方法、溶液 中所含杂质以及支持电解质性质等因素决定的^[14]。随着 CV 扫描圈数的增加,CV 曲线上氧化还原峰电流不断增大,表明 不断有 Pt 微粒和 Fe(III)的氧化物沉积在工作电极上。

图 1 Pt-Fe(III)在 MWCNTs/GCE 上的电沉积 CV 曲线

Figure 1 Cyclic voltammogram for electrodeposition of Pt—Fe(III) on MWCNTs/GCE

2.2 Pt-Fe(III)/MWCNTs 的表征

为研究电极修饰材料的成分和表面形貌,采用 X 射线衍 射仪和扫描电子显微镜对电极修饰材料进行了表征,见 图 2、3。

由图 2 可知: MWCNTs 和 Pt—Fe(III)/MWCNTs 在 2θ 为 26 °和 43 °时, 均出现了明显的衍射峰, 对应的分别是石墨 (002)和石墨(100)产生的晶面衍射峰, Pt—Fe(III)/MWC-

图 2 MWCNTs 种 Pt—Fe(III)/MWCNTs 的 XRD 图 Figure 2 The XRD patterns of MWCNTs and Pt—Fe(III)/MWCNTs

图 3 Pt—Fe(III)/MWCNTs 的 SEM 图 Figure 3 The SEM imagine of Pt—Fe(III)/MWCNTs

NTs的XRD图谱上产生的另外4个衍射峰和Pt(JCPDS 04-0802)的谱图一致,在40,46,67,81°的衍射峰与Pt(111)、 Pt(200)、Pt(220)和Pt(311)晶面的特征衍射峰一一对应,说 明Pt具有面心立方晶体结构,利用Sherrer公式和Pt(220) 的衍射峰半峰宽,计算出Pt的平均粒径为3nm。在XRD图 谱中,没有发现Fe(III)的衍射峰,表明Fe(III)是以非晶态存 在,其中Fe(III)是以Fe₂O₃和FeOOH形式存在^[13]。

由图 3 可知: MWNTs 的管径大约为 40~50 nm, MWNTs 上分散的大部分纳米粒子粒径约为 40~60 nm;这 些纳米粒子都具有网状结构,可能是由于 Fe(III)氧化物的 Fe—O—Fe 键产生的网状结构将 Pt 纳米粒子分割成粒径为 3 nm 的纳米粒子。

2.3 Pt—Fe(III)/MWCNTs/GCE 对 NO2⁻的电催化作用

将 Pt—Fe(III)/MWCNTs/GCE 分别在空白 PBS 和含 0.8 mmol/L NO₂⁻的 PBS 溶液中进行 DPV 扫描,所得 DPV 曲线见图 4。由图 4 可知:0.8 mmol/L NO₂⁻+0.1 mol/L PBS 曲线在 0.7 V 处产生了明显的氧化峰,说明 NO₂⁻在 Pt—Fe(III)/MWCNTs/GCE 上发生了明显的氧化反应,该 氧化峰对应的是 NO₂⁻氧化为 NO₃⁻ 的氧化反应,其可能的 反应机理:

a. PBS b. 0.8 mmol/L NO2-+0.1 mol/L PBS

- 图 4 Pt—Fe(III)/MWCNTs/GCE 在 0.1 mol/L PBS (pH=3)中的 DPV 曲线
- Figure 4 Differential pulse voltammograms of Pt— Fe(III)/MWCNTs/GCE in PBS at pH=3

将 GCE、MWCNTs/GCE 和 Pt—Fe(III)/MWCNTs/ GCE 3 种工作电极分别在空白 PBS 和含 0.8 mmol/L NO₂⁻ 的 PBS 中进行 DPV 扫描,所得 DPV 曲线见图 5。由图 5 可 知:GCE 曲线没有明显的氧化峰,MWCNTs/GCE 和 Pt— Fe(III)/MWCNTs/GCE 曲线在 0.7 V 附近都出现了明显的 氧化峰,但 Pt—Fe(III)/MWCNTs/GCE 曲线的氧化峰电流 最大,说明 GCE 对 NO₂⁻ 电催化作用不明显,MWCNTs/ GCE 和 Pt—Fe(III)/MWCNTs/GCE 均对 NO₂⁻产生了明 显的电催化作用,但 Pt—Fe(III)/MWCNTs/GCE 对 NO₂⁻ 的电催化作用最强。这是由于 MWCNTs 使电沉积在电极 上的 Pt 粒子更加分散^[15],且 Pt 粒子和 Fe(III)的协同作用,

a. GCE b. MWCNTs/GCE c. Pt-Fe(III)/MWCNTs/GCE

Figure 5 Differential pulse voltammograms of different electrodes in 0.1 mol/L PBS containing 0.8 mmol/L nitrite at pH=3

使得修饰电极表面积变大,活性位点增多,从而提高了修饰 电极对 NO₂⁻ 的电催化性能。

2.4 MWCNTs 修饰量对测定的影响

试验研究了 MWCNTs 修饰量在 $0 \sim 30 \ \mu L$ 变化时, NO₂⁻在 Pt—Fe(II)/MWCNTs/GCE 上氧化峰电流的变化 见图 6。结果表明:当 MWCNTs 用量在 $0 \sim 20 \ \mu L$ 变化时, 氧化峰电流随着 MWCNTs 用量的增加而增加,这是因为随 MWCNTs 修饰量的逐渐增加,电极表面催化活性位点增多, 导致氧化电流增加,但是当 MWCNTs 修饰量超过 20 μL 后, 氧化峰电流随 MWCNTs 修饰量的逐渐增加而降低,这是由 于电极表面 MWCNTs 修饰层厚度过大,阻碍了 NO₂⁻与电 极的电子交换。因此,以 20 μL 作为 MWCNTs 的最佳用量 来制备 Pt—Fe(II)/MWCNTs/GCE。

图 6 MWCNTs 用量对亚硝酸根氧化峰电流的影响 Figure 6 The effect of the amount of MWCNTs on oxidation peak current of nitrite

2.5 Pt-Fe(III) 电沉积圈数对测定的影响

试验研究了 Pt—Fe(III)电沉积圈数对 NO₂⁻在 Pt— Fe(II)/MWCNTs/GCE上的氧化峰电流的影响。将 MWC-NTs/GCE 在 0.5 mol/L H₂SO₄+1.8 mmol/L H₂PtCl₆+1.2 mmol/L FeCl₃溶液中 CV 扫描 0~50 圈,制得不同 PtFe(III)负载量的修饰电极,分别用不同 Pt—Fe(III)负载量 修饰电极为工作电极测定同浓度 NO₂⁻ 的氧化峰电流,见 图 7。结果表明,当 Pt—Fe(III)电沉积圈数在 0~20 变化 时,NO₂⁻ 的氧化峰电流随着电沉积圈数的增大而增大,当电 沉积圈数超过 20 时,NO₂⁻ 的氧化峰电流不再随着电沉积圈 数的增加而显著增大。这可能是由于 Pt—Fe(III)在 MWC-NTs/GCE 上的负载量趋近于饱和,兼顾修饰电极制备方法 的简捷性和测定 NO₂⁻ 的灵敏度,选择电沉积 20 圈作为 Pt—Fe(III)最佳负载量。

图 7 Pt—Fe(Ⅲ)的电沉积圈数对亚硝酸根 氧化峰电流的影响

Figure 7 The effect of the electrodepositon circles of Pt— Fe(\blacksquare) on oxidation peak current of nitrite

2.6 pH 值对测定的影响

试验研究了 PBS 的 pH 值在 $1 \sim 6$ 变化时,8 mmol/L NO₂⁻氧化峰电流的变化,见图 8。结果表明,NO₂⁻的氧化 峰电流随着 PBS 的 pH 值增大而减小,当选用 pH 值为 3 的 PBS 作为底液时,NO₂⁻的氧化峰电流较大,背景电流较小, 峰形最好,因此,选用 pH 值为 3 的 PBS 作为底液。

2.7 线性范围和检测限

采用上述优化条件,以 Pt—Fe(III)/MWCNTs/GCE 为 工作电极,建立 DPV 法测定 NO₂⁻的新方法,NO₂⁻在 0.7 V 处产生的氧化峰电流 $i_p(\mu A)$ 与其浓度 $c(\mu mol/L)$ 在 3.0×10⁻⁷~2.0×10⁻³ mol/L 范围内呈良好的线性关系,见 图 9、10,线性回归方程为: $i_p = 0.026$ 3c + 0.512,相关系数 r = 0.999 3,检测限为 1.0×10⁻⁷ mol/L。

 NO_2 -浓度由上到下分别为 3×10^{-7} , 7×10^{-5} , 5×10^{-4} , 8×10^{-4} , 2×10^{-3} mol/L

- 图 9 0.1 mol/L PBS(pH=3)中不同浓度 NO₂⁻在 Pt-Fe(III)/MWCNTs/GCE 上的 DPV 曲线
 - Figure 9 Differential pulse voltammograms of Pt/ MWCNTs/GCE in 0.1 mol/L PBS(pH=3)

Figure 10 The linear relationship between oxidation peak current of nitrite and concentration of nitrite

2.8 干扰试验

试验研究了 Pt—Fe(III)/MWCNTs/GCE 对 NO₂⁻的选 择性,见表 1。结果表明,在不超过±5%的误差范围内,固定 NO₂⁻的浓度为 0.8 mmol/L,50 倍的 K⁺、Na⁺、Ca²⁺、 Mg²⁺、SO₄²⁻、PO₄³⁻、SO₃²⁻和 NO₃⁻等常见离子对测定不 产生干扰,表明 Pt—Fe(III)/MWCNTs/GCE 对 NO₂⁻具有 较好的选择性。

表1 常见离子对亚硝酸根测定的影响

常见离子 (40 mmol/L)	相对误差/ %	常见离子 (40 mmol/L)	相对误差/ %
K ⁺	+1.2	SO4 ²⁻	+1.5
Na ⁺	+1.1	$PO_{4}{}^{3-}$	-1.7
Ca^{2+}	-3.1	SO3 ²⁻	-4.2
Mg^{2+}	-3.5	NO ₃ -	-2.4

2.9 电极的重现性与稳定性

用同一支 Pt-Fe(III)/MWCNTs/GCE 对 0.8 mmol/L

NO2⁻溶液平行测定8次,其峰电流值的相对标准偏差 (RSD)为 2.9%。将使用后的 Pt-Fe(III)/MWCNTs/GCE 清洗后,封好保存1周,其对NO2⁻的响应电流值为最初响 应电流值的 92%,说明 Pt-Fe(III)/MWCNTs/GCE 具有较 好的重现性和稳定性。

2.10 样品的检测及加标回收试验

采用 GB 5009.33—2010《食品安全国家标准 食品中亚

硝酸盐与硝酸盐的测定》的方法对市售的3种香肠样品进行 预处理,用 Pt-Fe(III)/MWCNTs/GCE 测定香肠中的亚硝 酸根含量,并做加标回收试验,同时,用 GB 5009.33-2010 中的分光光度法测定香肠样品中亚硝酸根含量,结果见表 2。 由表 2 可知, Pt-Fe(III)/MWCNTs/GCE 测定 NO2⁻的加 标回收率为98.1%~102%,与分光光度法测定的结果基本 一致,方法准确度较高。

Table 2 The recovery rate of the samples $(n=5)$							
样品	初始浓度/	加入浓度/	测得总浓度/	回收率/	分光光度法测得值/		
	$(mg \cdot kg^{-1})$	$(mg \cdot kg^{-1})$	$(mg \cdot kg^{-1})$	%	$(mg \cdot kg^{-1})$		
1	10.32	10.00	20.42	101.0	10.37		
2	11.24	10.00	21.05	98.1	11.19		
3	9.26	10.00	19.44	102.0	9.34		

表 2 样品的加标回收率

结论 3

本试验采用物理滴涂法和直接电化学沉积法制得的 Pt-Fe(III)/MWCNTs/GCE对 NO2⁻具有良好的电催化氧 化性能, Pt-Fe(III)/MWCNTs/GCE 可用于测定 3.0× $10^{-7} \sim 2.0 \times 10^{-3}$ mol/L 浓度范围内的 NO₂⁻, 检测限为 1.0×10⁻⁷ mol/L。该电化学分析方法具有成本低、操作简 便、响应快速、灵敏度高等优点,可用于检测食品中 NO2⁻的 含量。

参考文献

- 1 皇甫超申, 史齐, 李延红, 等. 亚硝酸盐对人体健康的利害分析 [J]. 环境与健康杂志, 2010, 27(8): 733~736.
- 2 刘晓军,蔡玉文,胡强,等.食品中亚硝酸盐检测方法研究进展 [J]. 食品与机械, 2014, 30(1): 239~242.
- 3 刘海军. 对氨基苯甲酸光度法测定水中 NO₂-[J]. 中国给水排 水,2000,16(2):51~52.
- 战旭梅,刘靖,刘萍. 高效液相色谱法测定香肠中亚硝酸盐含量 [J]. 食品与机械, 2014, 30(6): 72~74.
- 5 闫仲丽,杨志岩,张晓清.离子色谱法测定燕窝中亚硝酸盐的含 量[J]. 食品与机械, 2012, 28(3): 62~64.
- 6 Mikuška P, Večeřa Z. Simultaneous determination of nitrite and nitrate in water by chemiluminescent flow-injection analysis [1]. Analytica Chimica Acta, 2003, 495(1~2): 225~232.
- 7 Yildiz G, Oztekin N, Orbay A, et al. Voltammetric determination of nitrite in meat products using polyvinylimidazole modified carbon paste electrode [J]. Food Chemistry, 2014, 152: 245 \sim 250.
- 8 Ojani R, Raoof J B, Zamani S. A novel and simple electrochemical sensor for electrocatalytic reduction of nitrite and oxidation of phenylhydrazine based on poly (o-anisidine) film using ionic liquid

carbon paste electrode[J]. Applied Surface Science, 2013, 271: 98~104.

- Muthukumar P, John S A. Gold nanoparticles decorated on cobalt porphyrin-modified glassy carbon electrode for the sensitive determination of nitrite ion[J]. Journal of Colloid and Interface Science, 2014, 421: 78~84.
- 10 张娜,张克营,王芹.基于氧化锆/石墨烯复合材料修饰电极测 定亚硝酸根[J]. 分析试验室, 2014, 33(12): 1 413~1 415.
- 11 于浩,郑笑晨,刘冉彤.多壁碳纳米管负载铁氰化铜一铁修饰 电极的制备及对亚硝酸根的测定[J].应用化学,2014,31(11): 1 336~1 343.
- 12 Afkhami A, Soltani-Felehgari F, Madrakian T. Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode[J]. Sensors and Actuators B, 2014, 196:467~474.
- 13 Wang Shu-qing, Yin Yi-mei, Lin Xiang-qin. Cooperative effect of Pt nanoparticles and Fe(III) in the electrocatalytic oxidation of nitrite[J]. Electrochemistry Communications, 2004, 6(3): 259~262.
- 14 Bard A J, Faulkner L R. Electrochemical Methods [M]. New York: John Wiley Sons, 1980: 540.
- 15 Zhao Kun, He Yi, Zhu Cheng-yun, et al. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode[J]. Electrochimica Acta, 2012, 80: $405 \sim 410.$